In this paper we describe a system for beverage product recognition through the analysis of cooler shelf images. The extreme objects occlusion, the strong light influence and the poor quality of the images make this task a challenging one. To overcome these limitations, we rely on simple computer vision algorithms, like chamfer and color histogram matching and we introduce simple 3D modeling techniques. In our experiments, we demonstrate the effectiveness of our approach in terms of both detection accuracy and computational time.

A Computer Vision System for the Automatic Inventory of a Cooler

FIORUCCI, MARCO;Fratton, Marco;DULECHA, TINSAE GEBRECHRISTOS;PELILLO, Marcello;PRAVATO, Alberto;RONCATO, Alessandro
2017-01-01

Abstract

In this paper we describe a system for beverage product recognition through the analysis of cooler shelf images. The extreme objects occlusion, the strong light influence and the poor quality of the images make this task a challenging one. To overcome these limitations, we rely on simple computer vision algorithms, like chamfer and color histogram matching and we introduce simple 3D modeling techniques. In our experiments, we demonstrate the effectiveness of our approach in terms of both detection accuracy and computational time.
2017
Lecture Notes in Computer Science
File in questo prodotto:
File Dimensione Formato  
iciap2017.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Documento in Pre-print
Licenza: Accesso chiuso-personale
Dimensione 1.63 MB
Formato Adobe PDF
1.63 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3689708
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact