In this paper we present a model that combines the X3DMMS application with the G3CPie execution framework, that enables the user to perform large scale computations on distributed computing environments. Such an approach facilitates the management and the preparation of the data required to define the input files for DL POLY, a popular Molecular Dynamics (MD) package used for the study of molecular systems. The researcher can define in a intuitive way the initial configuration of the molecular system, making use of the X3DMMS virtual reality environment, and prepares the related MD package oriented input files. After having defined the initial conditions of the system, the researcher can carry out the required computations by using the G3CPie workflow environment, which controls the execution of the calculation on a distributed computing infrastructure. To test the validity of the developed model, implemented in the EGI infrastructure, we present the results carried out for a propane bulk system, where the solvation process of propane inside the bulk has been investigated. The presented approach provides a reusable example for other laboratories or groups interested both in acting through virtual representation of the molecular systems and porting their applications to distributed computing infrastructures.

User interaction and data management for large scale grid applications

ZOLLO, Fabiana;
2014-01-01

Abstract

In this paper we present a model that combines the X3DMMS application with the G3CPie execution framework, that enables the user to perform large scale computations on distributed computing environments. Such an approach facilitates the management and the preparation of the data required to define the input files for DL POLY, a popular Molecular Dynamics (MD) package used for the study of molecular systems. The researcher can define in a intuitive way the initial configuration of the molecular system, making use of the X3DMMS virtual reality environment, and prepares the related MD package oriented input files. After having defined the initial conditions of the system, the researcher can carry out the required computations by using the G3CPie workflow environment, which controls the execution of the calculation on a distributed computing infrastructure. To test the validity of the developed model, implemented in the EGI infrastructure, we present the results carried out for a propane bulk system, where the solvation process of propane inside the bulk has been investigated. The presented approach provides a reusable example for other laboratories or groups interested both in acting through virtual representation of the molecular systems and porting their applications to distributed computing infrastructures.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3683729
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact