We report an example of a two-dimensional undiscounted convex optimal growth model in continuous time in which, although there is a unique golden rule", no overtaking optimal solutions exists in a full neighborhood of the steady state. The example proves, for optimal growth models, a conjecture advanced in 1976 by Brock and Haurie that the minimum dimension for non-existence of overtaking optimal programs in continuous time is 2.
NON-EXISTENCE OF OPTIMAL PROGRAMS FOR UNDISCOUNTED GROWTH MODELS IN CONTINUOUS TIME
FAGGIAN, Silvia;
2017-01-01
Abstract
We report an example of a two-dimensional undiscounted convex optimal growth model in continuous time in which, although there is a unique golden rule", no overtaking optimal solutions exists in a full neighborhood of the steady state. The example proves, for optimal growth models, a conjecture advanced in 1976 by Brock and Haurie that the minimum dimension for non-existence of overtaking optimal programs in continuous time is 2.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0165176516305316-main.pdf
non disponibili
Tipologia:
Versione dell'editore
Licenza:
Accesso chiuso-personale
Dimensione
465.12 kB
Formato
Adobe PDF
|
465.12 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0165176516305316-mmc1.pdf
non disponibili
Descrizione: Materiale aggiuntivo/Appendice, allegato all'articolo principale
Tipologia:
Versione dell'editore
Licenza:
Accesso chiuso-personale
Dimensione
53.71 kB
Formato
Adobe PDF
|
53.71 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.