Chromosomal rearrangements in Xq are frequently associated to premature ovarian failure (POF) and have contributed to define a POF "critical region" from Xq13.3 to Xq26. Search for X-linked genes responsible for the phenotype has been elusive as most rearrangements did not interrupt genes and many were mapped to gene deserts. We now report that ovary-expressed genes flanked autosomal breakpoints in four POF cases analyzed whose X chromosome breakpoints interrupted a gene poor region in Xq21, where no ovary-expressed candidate genes could be found. We also show that the global down regulation in the oocyte and up regulation in the ovary of X-linked genes compared to the autosomes is mainly due to genes in the POF "critical region". We thus propose that POF, in X;autosome balanced translocations, may not only be caused by haploinsufficiency, but also by a oocyte-specific position effect on autosomal genes, dependent on dosage compensation mechanisms operating on the active X chromosome in mammals. © Springer-Verlag 2007.

Epigenetic control of the critical region for premature ovarian failure on autosomal genes translocated to the X chromosome: A hypothesis

RIZZOLIO, Flavio;
2007-01-01

Abstract

Chromosomal rearrangements in Xq are frequently associated to premature ovarian failure (POF) and have contributed to define a POF "critical region" from Xq13.3 to Xq26. Search for X-linked genes responsible for the phenotype has been elusive as most rearrangements did not interrupt genes and many were mapped to gene deserts. We now report that ovary-expressed genes flanked autosomal breakpoints in four POF cases analyzed whose X chromosome breakpoints interrupted a gene poor region in Xq21, where no ovary-expressed candidate genes could be found. We also show that the global down regulation in the oocyte and up regulation in the ovary of X-linked genes compared to the autosomes is mainly due to genes in the POF "critical region". We thus propose that POF, in X;autosome balanced translocations, may not only be caused by haploinsufficiency, but also by a oocyte-specific position effect on autosomal genes, dependent on dosage compensation mechanisms operating on the active X chromosome in mammals. © Springer-Verlag 2007.
2007
121
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3683031
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 29
social impact