Many in vitro and reporter assays have helped to clarify how transcription factors regulate gene transcription. Today, it is important to decode the map of all transcription factor binding sites in the genome context. Chromatin immunoprecipitation followed by genome-wide analyses have tremendously opened new ways to analyze the mechanisms of action of DNA binding factors, cofactors and epigenetic modifications. It is now possible to correlate these regulatory mechanisms with genomic features such as the promoter, enhancer, silencer, intragenic, and intergenic DNA sequences. These approaches help to clarify the complex rules that govern many biological processes. In this review we discuss the genome-wide approaches applied to the retinoblastoma gene family (RBF), the central player of cell cycle control. There are also new, possible directions that are suggested within the review that can be followed to further explore the role of each pRb members in the transcriptional networks of the cell. © 2010 Wiley-Liss, Inc.
RB gene family: Genome-wide ChIP approaches could open undiscovered roads
RIZZOLIO, Flavio;
2010-01-01
Abstract
Many in vitro and reporter assays have helped to clarify how transcription factors regulate gene transcription. Today, it is important to decode the map of all transcription factor binding sites in the genome context. Chromatin immunoprecipitation followed by genome-wide analyses have tremendously opened new ways to analyze the mechanisms of action of DNA binding factors, cofactors and epigenetic modifications. It is now possible to correlate these regulatory mechanisms with genomic features such as the promoter, enhancer, silencer, intragenic, and intergenic DNA sequences. These approaches help to clarify the complex rules that govern many biological processes. In this review we discuss the genome-wide approaches applied to the retinoblastoma gene family (RBF), the central player of cell cycle control. There are also new, possible directions that are suggested within the review that can be followed to further explore the role of each pRb members in the transcriptional networks of the cell. © 2010 Wiley-Liss, Inc.I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.