In cancer therapy, it is imperative to increase the efficacy and reduce side effects of chemotherapeutic drugs. Nanotechnology offers the unique opportunity to overcome these barriers. In particular, in the last few years, DNA nanostructures have gained attention for their biocompatibility, easy customized synthesis and ability to deliver drugs to cancer cells. Here, an open-caged pyramidal DNA at Doxorubicin (Py-Doxo) nanostructure was constructed with 10 DNA sequences of 26-28 nucleotides for drug delivery to cancer cells. The synthesized DNA nanostructures are sufficiently stable in biological medium. Py-Doxo exhibited significantly enhanced cytotoxicity of the delivered doxorubicin to breast and liver cancer cells up to twofold compared to free doxorubicin. This study demonstrates the importance of the shape and structure of the designed transporter DNA nanostructures for biomedical applications.
Enhanced Chemotherapeutic Behavior of Open-Caged DNA@Doxorubicin Nanostructures for Cancer Cells
RUSSO SPENA, CONCETTA;RIZZOLIO, Flavio
2015-01-01
Abstract
In cancer therapy, it is imperative to increase the efficacy and reduce side effects of chemotherapeutic drugs. Nanotechnology offers the unique opportunity to overcome these barriers. In particular, in the last few years, DNA nanostructures have gained attention for their biocompatibility, easy customized synthesis and ability to deliver drugs to cancer cells. Here, an open-caged pyramidal DNA at Doxorubicin (Py-Doxo) nanostructure was constructed with 10 DNA sequences of 26-28 nucleotides for drug delivery to cancer cells. The synthesized DNA nanostructures are sufficiently stable in biological medium. Py-Doxo exhibited significantly enhanced cytotoxicity of the delivered doxorubicin to breast and liver cancer cells up to twofold compared to free doxorubicin. This study demonstrates the importance of the shape and structure of the designed transporter DNA nanostructures for biomedical applications.File | Dimensione | Formato | |
---|---|---|---|
Kumar_JCP2016_free.pdf
Open Access dal 29/11/2016
Tipologia:
Documento in Pre-print
Licenza:
Accesso gratuito (solo visione)
Dimensione
1.32 MB
Formato
Adobe PDF
|
1.32 MB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.