In cancer therapy, it is imperative to increase the efficacy and reduce side effects of chemotherapeutic drugs. Nanotechnology offers the unique opportunity to overcome these barriers. In particular, in the last few years, DNA nanostructures have gained attention for their biocompatibility, easy customized synthesis and ability to deliver drugs to cancer cells. Here, an open-caged pyramidal DNA at Doxorubicin (Py-Doxo) nanostructure was constructed with 10 DNA sequences of 26-28 nucleotides for drug delivery to cancer cells. The synthesized DNA nanostructures are sufficiently stable in biological medium. Py-Doxo exhibited significantly enhanced cytotoxicity of the delivered doxorubicin to breast and liver cancer cells up to twofold compared to free doxorubicin. This study demonstrates the importance of the shape and structure of the designed transporter DNA nanostructures for biomedical applications.

Enhanced Chemotherapeutic Behavior of Open-Caged DNA@Doxorubicin Nanostructures for Cancer Cells

RUSSO SPENA, CONCETTA;RIZZOLIO, Flavio
2015-01-01

Abstract

In cancer therapy, it is imperative to increase the efficacy and reduce side effects of chemotherapeutic drugs. Nanotechnology offers the unique opportunity to overcome these barriers. In particular, in the last few years, DNA nanostructures have gained attention for their biocompatibility, easy customized synthesis and ability to deliver drugs to cancer cells. Here, an open-caged pyramidal DNA at Doxorubicin (Py-Doxo) nanostructure was constructed with 10 DNA sequences of 26-28 nucleotides for drug delivery to cancer cells. The synthesized DNA nanostructures are sufficiently stable in biological medium. Py-Doxo exhibited significantly enhanced cytotoxicity of the delivered doxorubicin to breast and liver cancer cells up to twofold compared to free doxorubicin. This study demonstrates the importance of the shape and structure of the designed transporter DNA nanostructures for biomedical applications.
2015
231
File in questo prodotto:
File Dimensione Formato  
Kumar_JCP2016_free.pdf

Open Access dal 29/11/2016

Tipologia: Documento in Pre-print
Licenza: Accesso gratuito (solo visione)
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3682993
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 29
social impact