The spontaneous self-organization of dissimilar ligands on the surface of metal nanoparticles is a very appealing approach to obtain anisotropic "spherical". systems. In addition to differences in ligand length and end groups, a further thermodynamic driving force to control the self-assembled monolayer organization may become available if the ligands are inherently immiscible, as is the case of hydrogenated (H-) and fluorinated (F-) species. Here, we validate the viability of this approach by combining F-19 NMR experiments and multiscale molecular simulations on large sets of mixed-monolayer-protected gold nanoparticles (NPs). The phase segregation of blends of F- and H-thiolates grafted on the surface of gold NPs allows a straightforward approach to patterned mixed monolayers, with the shapes of the monolayer domains being encoded in the structure of the F/H-thiolate ligands. The results obtained from this comprehensive study offer molecular design rules to achieve a precise control of inorganic nanoparticles protected by specifically patterned monolayers.
Patchy and Janus Nanoparticles by Self-Organization of Mixtures of Fluorinated and Hydrogenated Alkanethiolates on the Surface of a Gold Core
POLIZZI, Stefano;
2016-01-01
Abstract
The spontaneous self-organization of dissimilar ligands on the surface of metal nanoparticles is a very appealing approach to obtain anisotropic "spherical". systems. In addition to differences in ligand length and end groups, a further thermodynamic driving force to control the self-assembled monolayer organization may become available if the ligands are inherently immiscible, as is the case of hydrogenated (H-) and fluorinated (F-) species. Here, we validate the viability of this approach by combining F-19 NMR experiments and multiscale molecular simulations on large sets of mixed-monolayer-protected gold nanoparticles (NPs). The phase segregation of blends of F- and H-thiolates grafted on the surface of gold NPs allows a straightforward approach to patterned mixed monolayers, with the shapes of the monolayer domains being encoded in the structure of the F/H-thiolate ligands. The results obtained from this comprehensive study offer molecular design rules to achieve a precise control of inorganic nanoparticles protected by specifically patterned monolayers.File | Dimensione | Formato | |
---|---|---|---|
2016_ACSNano.pdf
Open Access dal 10/12/2019
Descrizione: articolo principale
Tipologia:
Versione dell'editore
Licenza:
Accesso chiuso-personale
Dimensione
6.72 MB
Formato
Adobe PDF
|
6.72 MB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.