Let G be a group generated by the set Gamma = {g is an element of G vertical bar g(2) = 1 not equal g} of its involutions. We prove that if (ab)(4) = 1 for every a, b is an element of Gamma, then G is a locally finite 2-group. This answers in the affirmative Question 18.58 in the Kourovka notebook ([3]).
On some groups generated by involutions
JABARA, Enrico
2016-01-01
Abstract
Let G be a group generated by the set Gamma = {g is an element of G vertical bar g(2) = 1 not equal g} of its involutions. We prove that if (ab)(4) = 1 for every a, b is an element of Gamma, then G is a locally finite 2-group. This answers in the affirmative Question 18.58 in the Kourovka notebook ([3]).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Jabara_Invol.pdf
embargo fino al 30/04/2036
Descrizione: Jabara_Invol.pdf
Tipologia:
Versione dell'editore
Licenza:
Accesso chiuso-personale
Dimensione
196.63 kB
Formato
Adobe PDF
|
196.63 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.