A group G is called a Cpp-group for a prime number p, if G has elements of order p and the centralizer of every non-trivial p-element of G is a p-group. In this paper we prove that the only infinite locally finite simple groups that are Cpp-groups are isomorphic either to PSL(2, K) or, if p = 2, to Sz(K), with K a suitable algebraic field over GF(p). Using this fact, we also give some structure theorems for infinite locally finite Cpp-groups.

On locally finite Cpp-groups

JABARA, Enrico
2016-01-01

Abstract

A group G is called a Cpp-group for a prime number p, if G has elements of order p and the centralizer of every non-trivial p-element of G is a p-group. In this paper we prove that the only infinite locally finite simple groups that are Cpp-groups are isomorphic either to PSL(2, K) or, if p = 2, to Sz(K), with K a suitable algebraic field over GF(p). Using this fact, we also give some structure theorems for infinite locally finite Cpp-groups.
File in questo prodotto:
File Dimensione Formato  
JabaraCostantini.pdf

embargo fino al 31/10/2030

Descrizione: Articolo
Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 271.29 kB
Formato Adobe PDF
271.29 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3680367
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact