With the advance in material science and the need to diversify market applications, silver nanoparticles (AgNPs) are modified by different surface coatings. However, how these surface modifications influence the effects of AgNPs on human health is still largely unknown. We have evaluated the uptake, toxicity and pharmacokinetics of AgNPs coated with citrate, polyethylene glycol, polyvinyl pyrolidone and branched polyethyleneimine (Citrate AgNPs, PEG AgNPs, PVP AgNPs and BPEI AgNPs, respectively). Our results demonstrated that the toxicity of AgNPs depends on the intracellular localization that was highly dependent on the surface charge. BPEI AgNPs ( potential=+46.5mV) induced the highest cytotoxicity and DNA fragmentation in Hepa1c1c7. In addition, it showed the highest damage to the nucleus of liver cells in the exposed mice, which is associated with a high accumulation in liver tissues. The PEG AgNPs ( potential=-16.2mV) showed the cytotoxicity, a long blood circulation, as well as bioaccumulation in spleen (34.33 mu g/g), which suggest better biocompatibility compared to the other chemically modified AgNPs. Moreover, the adsorption ability with bovine serum albumin revealed that the PEG surface of AgNPs has an optimal biological inertia and can effectively resist opsonization or non-specific binding to protein in mice. The overall results indicated that the biodistribution of AgNPs was significantly dependent on surface chemistry: BPEI AgNPs>Citrate AgNPs=PVP AgNPs>PEG AgNPs. This toxicological data could be useful in supporting the development of safe AgNPs for consumer products and drug delivery applications.

Demonstrating approaches to chemically modify the surface of Ag nanoparticles in order to influence their cytotoxicity and biodistribution after single dose acute intravenous administration

Pang, Chengfang;BRUNELLI, ANDREA;HRISTOZOV, DANAIL RUMENOV;SEMENZIN, Elena;MARCOMINI, Antonio;
2016-01-01

Abstract

With the advance in material science and the need to diversify market applications, silver nanoparticles (AgNPs) are modified by different surface coatings. However, how these surface modifications influence the effects of AgNPs on human health is still largely unknown. We have evaluated the uptake, toxicity and pharmacokinetics of AgNPs coated with citrate, polyethylene glycol, polyvinyl pyrolidone and branched polyethyleneimine (Citrate AgNPs, PEG AgNPs, PVP AgNPs and BPEI AgNPs, respectively). Our results demonstrated that the toxicity of AgNPs depends on the intracellular localization that was highly dependent on the surface charge. BPEI AgNPs ( potential=+46.5mV) induced the highest cytotoxicity and DNA fragmentation in Hepa1c1c7. In addition, it showed the highest damage to the nucleus of liver cells in the exposed mice, which is associated with a high accumulation in liver tissues. The PEG AgNPs ( potential=-16.2mV) showed the cytotoxicity, a long blood circulation, as well as bioaccumulation in spleen (34.33 mu g/g), which suggest better biocompatibility compared to the other chemically modified AgNPs. Moreover, the adsorption ability with bovine serum albumin revealed that the PEG surface of AgNPs has an optimal biological inertia and can effectively resist opsonization or non-specific binding to protein in mice. The overall results indicated that the biodistribution of AgNPs was significantly dependent on surface chemistry: BPEI AgNPs>Citrate AgNPs=PVP AgNPs>PEG AgNPs. This toxicological data could be useful in supporting the development of safe AgNPs for consumer products and drug delivery applications.
2016
10
File in questo prodotto:
File Dimensione Formato  
Pang et al. 2016_post-print.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.34 MB
Formato Adobe PDF
1.34 MB Adobe PDF Visualizza/Apri
Pang et al. 2016.pdf

non disponibili

Tipologia: Versione dell'editore
Licenza: Accesso chiuso-personale
Dimensione 2.06 MB
Formato Adobe PDF
2.06 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3680179
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 60
  • ???jsp.display-item.citation.isi??? 51
social impact