This work investigates how approximate binary patterns can be objectively evaluated by using as a proxy measure the quality achieved by a text clustering algorithm, where the document features are derived from such patterns. Specifically, we exploit approximate patterns within the well-known FIHC (Frequent Itemset-based Hierarchical Clustering) algorithm, which was originally designed to employ exact frequent itemsets to achieve a concise and informative representation of text data. We analyze different state-of-the-art algorithms for approximate pattern mining, in particular we measure their ability in extracting patterns that well characterize the document topics in terms of the quality of clustering obtained by FIHC. Extensive and reproducible experiments, conducted on publicly available text corpora, show that approximate itemsets provide a better representation than exact ones.

Evaluating top-K approximate patterns via text clustering

LUCCHESE, Claudio;ORLANDO, Salvatore;
2016-01-01

Abstract

This work investigates how approximate binary patterns can be objectively evaluated by using as a proxy measure the quality achieved by a text clustering algorithm, where the document features are derived from such patterns. Specifically, we exploit approximate patterns within the well-known FIHC (Frequent Itemset-based Hierarchical Clustering) algorithm, which was originally designed to employ exact frequent itemsets to achieve a concise and informative representation of text data. We analyze different state-of-the-art algorithms for approximate pattern mining, in particular we measure their ability in extracting patterns that well characterize the document topics in terms of the quality of clustering obtained by FIHC. Extensive and reproducible experiments, conducted on publicly available text corpora, show that approximate itemsets provide a better representation than exact ones.
2016
Big Data Analytics and Knowledge Discovery - 18th International Conference, DaWaK 2016
File in questo prodotto:
File Dimensione Formato  
Evaluating Top-K Approximate Patterns via Text Clustering.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 290.92 kB
Formato Adobe PDF
290.92 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3676610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact