This paper considers a sparsity approach for inference in large vector autoregressive (VAR) models. The approach is based on a Bayesian procedure and a graphical representation of VAR models. We discuss a Markov chain Monte Carlo algorithm for sparse graph selection, parameter estimation, and equation-specific lag selection. We show the efficiency of our algorithm on simulated data and illustrate the effectiveness of our approach in forecasting macroeconomic time series and in measuring contagion risk among financial institutions.

Sparse Graphical Vector Autoregression: A Bayesian Approach

BILLIO, Monica;CASARIN, Roberto
2016-01-01

Abstract

This paper considers a sparsity approach for inference in large vector autoregressive (VAR) models. The approach is based on a Bayesian procedure and a graphical representation of VAR models. We discuss a Markov chain Monte Carlo algorithm for sparse graph selection, parameter estimation, and equation-specific lag selection. We show the efficiency of our algorithm on simulated data and illustrate the effectiveness of our approach in forecasting macroeconomic time series and in measuring contagion risk among financial institutions.
File in questo prodotto:
File Dimensione Formato  
Sparse_BGVAR.pdf

embargo fino al 04/08/2030

Tipologia: Documento in Pre-print
Licenza: Accesso chiuso-personale
Dimensione 873.74 kB
Formato Adobe PDF
873.74 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3676331
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact