Learning to Rank (LtR) is the machine learning method of choice for producing high quality document ranking functions from a ground-truth of training examples. In practice, efficiency and effectiveness are intertwined concepts and trading off effectiveness for meeting efficiency constraints typically existing in large-scale systems is one of the most urgent issues. In this paper we propose a new framework, named CLEaVER, for optimizing machine-learned ranking models based on ensembles of regression trees. The goal is to improve efficiency at document scoring time without affecting quality. Since the cost of an ensemble is linear in its size, CLEaVER first removes a subset of the trees in the ensemble, and then fine-tunes the weights of the remaining trees according to any given quality measure. Experiments conducted on two publicly available LtR datasets show that CLEaVER is able to prune up to 80% of the trees and provides an efficiency speed-up up to 2.6x without affecting the effectiveness of the model.

Learning to Rank (LtR) is the machine learning method of choice for producing high quality document ranking functions from a ground-truth of training examples. In practice, efficiency and effectiveness are intertwined concepts and trading off effectiveness for meeting efficiency constraints typically existing in large-scale systems is one of the most urgent issues. In this paper we propose a new framework, named CLEaVER, for optimizing machine-learned ranking models based on ensembles of regression trees. The goal is to improve efficiency at document scoring time without affecting quality. Since the cost of an ensemble is linear in its size, CLEaVER first removes a subset of the trees in the ensemble, and then fine-tunes the weights of the remaining trees according to any given quality measure. Experiments conducted on two publicly available LtR datasets show that CLEaVER is able to prune up to 80% of the trees and provides an efficiency speed-up up to 2.6x without affecting the effectiveness of the model.

Post-Learning Optimization of Tree Ensembles for Efficient Ranking

LUCCHESE, Claudio;ORLANDO, Salvatore;
2016-01-01

Abstract

Learning to Rank (LtR) is the machine learning method of choice for producing high quality document ranking functions from a ground-truth of training examples. In practice, efficiency and effectiveness are intertwined concepts and trading off effectiveness for meeting efficiency constraints typically existing in large-scale systems is one of the most urgent issues. In this paper we propose a new framework, named CLEaVER, for optimizing machine-learned ranking models based on ensembles of regression trees. The goal is to improve efficiency at document scoring time without affecting quality. Since the cost of an ensemble is linear in its size, CLEaVER first removes a subset of the trees in the ensemble, and then fine-tunes the weights of the remaining trees according to any given quality measure. Experiments conducted on two publicly available LtR datasets show that CLEaVER is able to prune up to 80% of the trees and provides an efficiency speed-up up to 2.6x without affecting the effectiveness of the model.
2016
proceeding SIGIR '16 Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval
File in questo prodotto:
File Dimensione Formato  
Post-Learning Optimization of Tree Ensembles for Efficient Ranking.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 426.27 kB
Formato Adobe PDF
426.27 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3675318
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 37
social impact