Digital traces of conversations in micro-blogging platforms and OSNs provide information about user opinion with a high degree of resolution. These information sources can be exploited to understand and monitor collective behaviors. In this work, we focus on polarization classes, i.e., those topics that require the user to side exclusively with one position. The proposed method provides an iterative classification of users and keywords: first, polarized users are identified, then polarized keywords are discovered by monitoring the activities of previously classified users. This method thus allows tracking users and topics over time. We report several experiments conducted on two Twitter datasets during political election time-frames. We measure the user classification accuracy on a golden set of users, and analyze the relevance of the extracted keywords for the ongoing political discussion.

Digital traces of conversations in micro-blogging platforms and OSNs provide information about user opinion with a high degree of resolution. These information sources can be exploited to understand and monitor collective behaviours. In this work, we focus on polarisation classes, i.e., those topics that require the user to side exclusively with one position. The proposed method provides an iterative classification of users and keywords: first, polarised users are identified, then polarised keywords are discovered by monitoring the activities of previously classified users. This method thus allows tracking users and topics over time. We report several experiments conducted on two Twitter datasets during political election time-frames. We measure the user classification accuracy on a golden set of users, and analyse the relevance of the extracted keywords for the ongoing political discussion.

Polarized User and Topic Tracking in Twitter

LUCCHESE, Claudio;ORLANDO, Salvatore;
2016

Abstract

Digital traces of conversations in micro-blogging platforms and OSNs provide information about user opinion with a high degree of resolution. These information sources can be exploited to understand and monitor collective behaviors. In this work, we focus on polarization classes, i.e., those topics that require the user to side exclusively with one position. The proposed method provides an iterative classification of users and keywords: first, polarized users are identified, then polarized keywords are discovered by monitoring the activities of previously classified users. This method thus allows tracking users and topics over time. We report several experiments conducted on two Twitter datasets during political election time-frames. We measure the user classification accuracy on a golden set of users, and analyze the relevance of the extracted keywords for the ongoing political discussion.
Proceeding SIGIR '16 Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval
File in questo prodotto:
File Dimensione Formato  
Polarized User and Topic Tracking in Twitter.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 354.77 kB
Formato Adobe PDF
354.77 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10278/3675317
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 6
social impact