Although the halogen bond (XB) has been so far mainly studied in silico and in the solid state, its potential impact in solution is yet to be fully understood. In this study, we describe the first systematic investigation on the halogen bond in solvated environment by high-performance liquid chromatography (HPLC). Thirty three atropisomeric polyhalogenated-4,4'-bipyridines (HBipys), containing Cl, Br and I as substituents, were selected and used as potential XB donors (XBDs) on two cellulose-based chiral stationary phases (CSPs) containing potential XB acceptors (XBAs). The impact of the halogens on the enantiodis-crimination mechanism was investigated and iodine showed a pivotal role on the enantioseparation in non-polar medium. Electrostatic potentials (EPs) were computed to understand the electrostatic component of CSP-analyte interaction. Moreover, van't Hoff studies for ten HBipys were performed and the thermodynamic parameters governing the halogen-dependent enantioseparations are discussed. Finally, a molecular dynamic (MD) simulation is proposed to model halogen bond in polysaccharide-analyte complexes by inclusion of a charged extra point to represent the positive 'cr-hole' on the halogen atom. On the basis of both experimental results and theoretical data, we have profiled the halogen bond as a chemo-, regio-, site- and stereoselective interaction which can work in HPLC environment besides other known interactions based on the complementarity between selector and selectand. (C) 2016 Elsevier B.V. All rights reserved.

Insights into halogen bond-driven enantioseparations

COSSU, Sergio Antonio
2016-01-01

Abstract

Although the halogen bond (XB) has been so far mainly studied in silico and in the solid state, its potential impact in solution is yet to be fully understood. In this study, we describe the first systematic investigation on the halogen bond in solvated environment by high-performance liquid chromatography (HPLC). Thirty three atropisomeric polyhalogenated-4,4'-bipyridines (HBipys), containing Cl, Br and I as substituents, were selected and used as potential XB donors (XBDs) on two cellulose-based chiral stationary phases (CSPs) containing potential XB acceptors (XBAs). The impact of the halogens on the enantiodis-crimination mechanism was investigated and iodine showed a pivotal role on the enantioseparation in non-polar medium. Electrostatic potentials (EPs) were computed to understand the electrostatic component of CSP-analyte interaction. Moreover, van't Hoff studies for ten HBipys were performed and the thermodynamic parameters governing the halogen-dependent enantioseparations are discussed. Finally, a molecular dynamic (MD) simulation is proposed to model halogen bond in polysaccharide-analyte complexes by inclusion of a charged extra point to represent the positive 'cr-hole' on the halogen atom. On the basis of both experimental results and theoretical data, we have profiled the halogen bond as a chemo-, regio-, site- and stereoselective interaction which can work in HPLC environment besides other known interactions based on the complementarity between selector and selectand. (C) 2016 Elsevier B.V. All rights reserved.
File in questo prodotto:
File Dimensione Formato  
2016 Insight into XB driven enantioseparations.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 1.67 MB
Formato Adobe PDF
1.67 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3673682
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 35
social impact