Posidonia oceanica (L.) Delile, 1813 is a seagrass species endemic to the Mediterranean Sea, which is considered as one of the key habitats of the coastal areas. This species forms large meadows sensitive to several anthropogenic pressures, that can be regarded as indicators of environment quality in coastal environments and its distributional patterns should be take into account when evaluating the Environmental Status following the Ecosystem approach promoted by the Mediterranean Action Plan of UNEP and the EU Marine Strategy Framework Directive (2008/56/EC). The aim of this study was to develop a Species Distribution Model for P. oceanica, to be applied to the whole Mediterranean North African coast, in order to obtain an estimation of the potential distribution of this species in the region to be considered as an indicator for the assessment of good Environmental Status. As the study area is a data-poor zone with regard to seagrass distribution (i.e. only for some areas detailed distribution maps are available), the Species Distribution Model (SDM) was calibrated using high resolution data from 5 Mediterranean sites, located in Italy and Spain and validated using available data from the North African coast. Usually, when developing SDMs species occupancy data is available at coarser resolution than the information of environmental variables, and thus has to be downscaled at the appropriate grain to be coupled to the environmental conditions. Tackling the case of P. oceanica we had to face the opposite problem: the quality (in terms of resolution) of the information on seagrass distribution is generally very high compared to the environmental data available over large scale in marine domains (e.g. global bathymetry data). The high resolution application and the model transfer (from calibration areas to North African coast) was possible taking advantage of Ocean Color products: the probability of presence of the species in a given area was modelled using a binomial generalized linear model as a function of the bathymetry and some water characteristics mainly obtained from satellite data. Full resolution (c.a. 300m) Medium Resolution Imaging Spectrometer (MERIS) sensor imagery have been processed in order to extract a set of environmental variables to be coupled to seagrass distribution in the areas used to calibrate the model and for the whole North Africa coast (i.e. model application area). For the period 2003-2011 we processed data of: 1) the diffuse attenuation coefficient 2) coloured dissolved organic matter 3) Particle backscatter at 443nm; 4) Euphotic depth, estimated considering the coefficient of extinction of light; 5) Euphotic depth/ depth ratio, combining the estimation of euphotic depth with the bathymetry. Other variables have been resampled at MERIS full resolution, like data obtained from Moderate Resolution Imaging Spectroradiometer (MODIS; Sea Surface Temperature and Photosynthetically Available Radiation) or by model simulation (e.g. water salinity). The fitted model suggests that water transparency plays a major role, but also other variables, such as salinity and photosynthetically available radiation at surface, are important at larger spatial scales in explaining meadows distribution. The availability of high resolution time-series of input data allowed us to apply the validated model to the whole NA coast. Using model predictions to identify areas with suitable conditions for P. oceanica, it was possible to develop an indicator of potential habitat use and to define baseline reference conditions, necessary for the assessment of Good Environmental Status in Mediterranean coastal waters. This work shows how the Ocean and Land Colour Instrument (OLCI) within the Sentinel-3 mission can be exploited - thanks to the way opened by MERIS - to carry out the operational monitoring needed for the implementation of the UNEP MAP and EU MSFD Ecosystem Approach to the integrated management of land, water and living resources.

Ocean Color products supporting the assessment of good environmental status: development of a spatial distribution model for the seagrass Posidonia oceanica (L.) Delile, 1813.

ZUCCHETTA, MATTEO;PASTRES, Roberto
2015-01-01

Abstract

Posidonia oceanica (L.) Delile, 1813 is a seagrass species endemic to the Mediterranean Sea, which is considered as one of the key habitats of the coastal areas. This species forms large meadows sensitive to several anthropogenic pressures, that can be regarded as indicators of environment quality in coastal environments and its distributional patterns should be take into account when evaluating the Environmental Status following the Ecosystem approach promoted by the Mediterranean Action Plan of UNEP and the EU Marine Strategy Framework Directive (2008/56/EC). The aim of this study was to develop a Species Distribution Model for P. oceanica, to be applied to the whole Mediterranean North African coast, in order to obtain an estimation of the potential distribution of this species in the region to be considered as an indicator for the assessment of good Environmental Status. As the study area is a data-poor zone with regard to seagrass distribution (i.e. only for some areas detailed distribution maps are available), the Species Distribution Model (SDM) was calibrated using high resolution data from 5 Mediterranean sites, located in Italy and Spain and validated using available data from the North African coast. Usually, when developing SDMs species occupancy data is available at coarser resolution than the information of environmental variables, and thus has to be downscaled at the appropriate grain to be coupled to the environmental conditions. Tackling the case of P. oceanica we had to face the opposite problem: the quality (in terms of resolution) of the information on seagrass distribution is generally very high compared to the environmental data available over large scale in marine domains (e.g. global bathymetry data). The high resolution application and the model transfer (from calibration areas to North African coast) was possible taking advantage of Ocean Color products: the probability of presence of the species in a given area was modelled using a binomial generalized linear model as a function of the bathymetry and some water characteristics mainly obtained from satellite data. Full resolution (c.a. 300m) Medium Resolution Imaging Spectrometer (MERIS) sensor imagery have been processed in order to extract a set of environmental variables to be coupled to seagrass distribution in the areas used to calibrate the model and for the whole North Africa coast (i.e. model application area). For the period 2003-2011 we processed data of: 1) the diffuse attenuation coefficient 2) coloured dissolved organic matter 3) Particle backscatter at 443nm; 4) Euphotic depth, estimated considering the coefficient of extinction of light; 5) Euphotic depth/ depth ratio, combining the estimation of euphotic depth with the bathymetry. Other variables have been resampled at MERIS full resolution, like data obtained from Moderate Resolution Imaging Spectroradiometer (MODIS; Sea Surface Temperature and Photosynthetically Available Radiation) or by model simulation (e.g. water salinity). The fitted model suggests that water transparency plays a major role, but also other variables, such as salinity and photosynthetically available radiation at surface, are important at larger spatial scales in explaining meadows distribution. The availability of high resolution time-series of input data allowed us to apply the validated model to the whole NA coast. Using model predictions to identify areas with suitable conditions for P. oceanica, it was possible to develop an indicator of potential habitat use and to define baseline reference conditions, necessary for the assessment of Good Environmental Status in Mediterranean coastal waters. This work shows how the Ocean and Land Colour Instrument (OLCI) within the Sentinel-3 mission can be exploited - thanks to the way opened by MERIS - to carry out the operational monitoring needed for the implementation of the UNEP MAP and EU MSFD Ecosystem Approach to the integrated management of land, water and living resources.
2015
Proc. ‘Sentinel-3 for Science Workshop’
File in questo prodotto:
File Dimensione Formato  
288_zucchetta.pdf

non disponibili

Tipologia: Versione dell'editore
Licenza: Accesso chiuso-personale
Dimensione 810.46 kB
Formato Adobe PDF
810.46 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3673390
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact