A new synthesised triphenylamine-based dye having a branched structure with one OH-ending branch able to interact with the surface hydroxyl moieties of mesoporous TiO2 is reported. Optical properties of the dye-titania hybrid material are presented and the higher efficiency of the dye on pure anatase TiO2 compared to the commercial Degussa P25, which contains a rutile phase component, is confirmed. The optical and chemical properties of the dye make it a promising candidate as a metal-free dye for DSSCs or as a host for a variety of transition or main group metal ions for different applications.

A new synthesised triphenylamine-based dye having a branched structure with one OH-ending branch able to interact with the surface hydroxyl moieties of mesoporous TiO2 is reported. Optical properties of the dye-titania hybrid material are presented and the higher efficiency of the dye on pure anatase TiO2 compared to the commercial Degussa P25, which contains a rutile phase component, is confirmed. The optical and chemical properties of the dye make it a promising candidate as a metal-free dye for DSSCs or as a host for a variety of transition or main group metal ions for different applications.

A novel triphenylamine-based dye sensitizer supported on titania nanoparticles and the effect of titania fabrication on its optical properties

MORETTI, Elisa;AVERSA, MANUELA;SCRIVANTI, Alberto;STORARO, Loretta;TALON, Aldo;MARIN, RICCARDO;POLIZZI, Stefano
2016-01-01

Abstract

A new synthesised triphenylamine-based dye having a branched structure with one OH-ending branch able to interact with the surface hydroxyl moieties of mesoporous TiO2 is reported. Optical properties of the dye-titania hybrid material are presented and the higher efficiency of the dye on pure anatase TiO2 compared to the commercial Degussa P25, which contains a rutile phase component, is confirmed. The optical and chemical properties of the dye make it a promising candidate as a metal-free dye for DSSCs or as a host for a variety of transition or main group metal ions for different applications.
2016
70
File in questo prodotto:
File Dimensione Formato  
79storaro16.pdf

non disponibili

Descrizione: articolo principale
Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 479.87 kB
Formato Adobe PDF
479.87 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3666393
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact