The enormous investments in nanotechnology have led to an exponential increase of new manufactured nano-enabled materials whose impact in the aquatic systems is still largely unknown. Ecotoxicity and nanosafety studies mostly resulted in contradictory results and generally failed to clearly identify biological patterns that could be related specifically to nanotoxicity. Generation of reactive oxygen species (ROS) is one of the most discussed nanotoxicity mechanism in literature. ROS can induce oxidative stress (OS), resulting in cyto- and genotoxicity. The ROS overproduction can trigger the induction of anti-oxidant enzymes such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidases (GPx), which are used as biomarkers of response. A critical overview of the biochemical responses induced by the presence of NPs on freshwater organisms is performed with a strong interest on indicators of ROS and general stress. A special focus will be given to the NPs transformations, including aggregation, and dissolution, in the exposure media and the produced biochemical endpoints.

Manufactured nanoparticles in the aquatic environment-biochemical responses on freshwater organisms: A critical overview

LIBRALATO, Giovanni;
2016-01-01

Abstract

The enormous investments in nanotechnology have led to an exponential increase of new manufactured nano-enabled materials whose impact in the aquatic systems is still largely unknown. Ecotoxicity and nanosafety studies mostly resulted in contradictory results and generally failed to clearly identify biological patterns that could be related specifically to nanotoxicity. Generation of reactive oxygen species (ROS) is one of the most discussed nanotoxicity mechanism in literature. ROS can induce oxidative stress (OS), resulting in cyto- and genotoxicity. The ROS overproduction can trigger the induction of anti-oxidant enzymes such as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidases (GPx), which are used as biomarkers of response. A critical overview of the biochemical responses induced by the presence of NPs on freshwater organisms is performed with a strong interest on indicators of ROS and general stress. A special focus will be given to the NPs transformations, including aggregation, and dissolution, in the exposure media and the produced biochemical endpoints.
2016
170
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0166445X15301028-main.pdf

embargo fino al 31/12/2025

Descrizione: Articolo
Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3663890
Citazioni
  • ???jsp.display-item.citation.pmc??? 26
  • Scopus 179
  • ???jsp.display-item.citation.isi??? 157
social impact