Nanocarriers as theranostic agents are under the spotlight in modern nanomedicine, and mesoporous nanomaterials represent a class of devices of major interest. Zirconia is biocompatible, inert with good mechanical and thermal properties for in vivo biomedical applications. Although a few examples of zirconia nanoparticles have been described, a major limitation was the low surface area, which is fundamental for payload transport. Here, a simple and highly efficient method is described for the synthesis of spherical mesoporous zirconia nanoparticles (MZNs) with a high surface area through a neutral surfactant-assisted sol-gel method. The combination of alkali halides and vacuum extraction allowed stabilization of the shape and size of MZNs and to avoid porous network failure, respectively. In comparison to published synthesis procedures, a high surface area has been obtained. Biological experiments demonstrated that MZNs were biocompatible, cell permeable and degradable providing a proof of concept for theranostic applications. A comparison with the properties of mesoporous silica nanoparticles has also been performed.
Nanocarriers as theranostic agents are under the spotlight in modern nanomedicine, and mesoporous nanomaterials represent a class of devices of major interest. Zirconia is biocompatible, inert with good mechanical and thermal properties for in vivo biomedical applications. Although a few examples of zirconia nanoparticles have been described, a major limitation was the low surface area, which is fundamental for payload transport. Here, a simple and highly efficient method is described for the synthesis of spherical mesoporous zirconia nanoparticles (MZNs) with a high surface area through a neutral surfactant-assisted sol-gel method. The combination of alkali halides and vacuum extraction allowed stabilization of the shape and size of MZNs and to avoid porous network failure, respectively. In comparison to published synthesis procedures, a high surface area has been obtained. Biological experiments demonstrated that MZNs were biocompatible, cell permeable and degradable providing a proof of concept for theranostic applications. A comparison with the properties of mesoporous silica nanoparticles has also been performed.
Biocompatible tailored zirconia mesoporous nanoparticles with high surface area for theranostic applications
SPONCHIA, GABRIELE;AMBROSI, EMMANUELE KIZITO;RIZZOLIO, Flavio;Del Tedesco, Anna;RIELLO, Pietro;BENEDETTI, Alvise
2015-01-01
Abstract
Nanocarriers as theranostic agents are under the spotlight in modern nanomedicine, and mesoporous nanomaterials represent a class of devices of major interest. Zirconia is biocompatible, inert with good mechanical and thermal properties for in vivo biomedical applications. Although a few examples of zirconia nanoparticles have been described, a major limitation was the low surface area, which is fundamental for payload transport. Here, a simple and highly efficient method is described for the synthesis of spherical mesoporous zirconia nanoparticles (MZNs) with a high surface area through a neutral surfactant-assisted sol-gel method. The combination of alkali halides and vacuum extraction allowed stabilization of the shape and size of MZNs and to avoid porous network failure, respectively. In comparison to published synthesis procedures, a high surface area has been obtained. Biological experiments demonstrated that MZNs were biocompatible, cell permeable and degradable providing a proof of concept for theranostic applications. A comparison with the properties of mesoporous silica nanoparticles has also been performed.File | Dimensione | Formato | |
---|---|---|---|
GSponchia_JMCB_2015.pdf
non disponibili
Tipologia:
Versione dell'editore
Licenza:
Accesso chiuso-personale
Dimensione
2.48 MB
Formato
Adobe PDF
|
2.48 MB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.