A challenge for population health surveillance systems using telephone methodologies is to maintain representative estimates as response rates decrease. Raked weighting, rather than conventional poststratification methodologies, has been developed to improve representativeness of estimates produced from telephone-based surveillance systems by incorporating a wider range of sociodemographic variables using an iterative proportional fitting process. This study examines this alternative weighting methodology with the monthly South Australian population health surveillance system report of randomly selected people of all ages in 2013 (n = 7,193) using computer-assisted telephone interviewing. Poststratification weighting used age groups, sex, and area of residence. Raked weights included an additional 6 variables: dwelling status, number of people in household, country of birth, marital status, educational level, and highest employment status. Most prevalence estimates (e.g., diabetes and asthma) did not change when raked weights were applied. Estimates that changed by at least 2 percentage points (e.g., tobacco smoking and mental health conditions) were associated with socioeconomic circumstances, such as dwelling status, which were included in the raked-weighting methodology. Raking methodology has overcome, to some extent, nonresponse bias associated with the sampling methodology by incorporating lower socioeconomic groups and those who are routinely not participating in population surveys into the weighting formula.

Health Estimates Using Survey Raked-Weighting Techniques in an Australian Population Health Surveillance System

CAMPOSTRINI, Stefano;
2015-01-01

Abstract

A challenge for population health surveillance systems using telephone methodologies is to maintain representative estimates as response rates decrease. Raked weighting, rather than conventional poststratification methodologies, has been developed to improve representativeness of estimates produced from telephone-based surveillance systems by incorporating a wider range of sociodemographic variables using an iterative proportional fitting process. This study examines this alternative weighting methodology with the monthly South Australian population health surveillance system report of randomly selected people of all ages in 2013 (n = 7,193) using computer-assisted telephone interviewing. Poststratification weighting used age groups, sex, and area of residence. Raked weights included an additional 6 variables: dwelling status, number of people in household, country of birth, marital status, educational level, and highest employment status. Most prevalence estimates (e.g., diabetes and asthma) did not change when raked weights were applied. Estimates that changed by at least 2 percentage points (e.g., tobacco smoking and mental health conditions) were associated with socioeconomic circumstances, such as dwelling status, which were included in the raked-weighting methodology. Raking methodology has overcome, to some extent, nonresponse bias associated with the sampling methodology by incorporating lower socioeconomic groups and those who are routinely not participating in population surveys into the weighting formula.
2015
182
File in questo prodotto:
File Dimensione Formato  
aje Dal Grande 2015.pdf

accesso aperto

Descrizione: pdf articolo
Tipologia: Versione dell'editore
Licenza: Accesso gratuito (solo visione)
Dimensione 170.53 kB
Formato Adobe PDF
170.53 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3660956
Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 37
social impact