Global warming is increasingly affecting marine ecosystems and ecological services they provide. One of the major consequences is a shift in species geographical distribution, which may affect resources availability to fisheries. We computed the mean temperature of the catch (MTC) for Italian catches from 1972 to 2012 to test if an increase of warmer-water species against colder-water ones was observed. We further analysed the relationship among MTC, landings, fishing effort and climatic factors through a Linear Mixed Models approach. Global MTC increased at a rate of 0.12 _C per decade. Though, by considering the influence of sea surface temperature (SST), a strongest increase (0.31 _C) was estimated in southernmost areas, while in the northernmost basin (Northern Adriatic Sea) a decrease of 0.14 _C was observed. SST resulted the most relevant driver, and the relationship between MTC and SST showed a high spatial variability both in terms of strength and sign, being positively stronger in southernmost areas while negative in the northernmost basin. The result is probably underestimated since several psychrophilous and thermophilous species were not included in the analysis. However, it seems that a change towards warmer-water species has already occurred in Italian marine ecosystems. Conversely, total landings temporal dynamics seem mostly driven by changes in fishing effort rather than by MTC and climatic factors. Consequently, fishery management strategies need to focalize primarily on fishing effort reduction, in order to reduce the pressure on the stocks while increasing their resilience to other stressors, among which global warming

Global warming is increasingly affecting marine ecosystems and ecological services they provide. One of the major consequences is a shift in species geographical distribution, which may affect resources availability to fisheries. We computed the mean temperature of the catch (MTC) for Italian catches from 1972 to 2012 to test if an increase of warmer-water species against colder-water ones was observed. We further analysed the relationship among MTC, landings, fishing effort and climatic factors through a Linear Mixed Models approach. Global MTC increased at a rate of 0.12 A degrees C per decade. Though, by considering the influence of sea surface temperature (SST), a strongest increase (0.31 A degrees C) was estimated in southernmost areas, while in the northernmost basin (Northern Adriatic Sea) a decrease of 0.14 A degrees C was observed. SST resulted the most relevant driver, and the relationship between MTC and SST showed a high spatial variability both in terms of strength and sign, being positively stronger in southernmost areas while negative in the northernmost basin. The result is probably underestimated since several psychrophilous and thermophilous species were not included in the analysis. However, it seems that a change towards warmer-water species has already occurred in Italian marine ecosystems. Conversely, total landings temporal dynamics seem mostly driven by changes in fishing effort rather than by MTC and climatic factors. Consequently, fishery management strategies need to focalize primarily on fishing effort reduction, in order to reduce the pressure on the stocks while increasing their resilience to other stressors, among which global warming.

Climate impact on Italian fisheries (Mediterranean Sea)

PRANOVI, Fabio;ZUCCHETTA, MATTEO
2015

Abstract

Global warming is increasingly affecting marine ecosystems and ecological services they provide. One of the major consequences is a shift in species geographical distribution, which may affect resources availability to fisheries. We computed the mean temperature of the catch (MTC) for Italian catches from 1972 to 2012 to test if an increase of warmer-water species against colder-water ones was observed. We further analysed the relationship among MTC, landings, fishing effort and climatic factors through a Linear Mixed Models approach. Global MTC increased at a rate of 0.12 _C per decade. Though, by considering the influence of sea surface temperature (SST), a strongest increase (0.31 _C) was estimated in southernmost areas, while in the northernmost basin (Northern Adriatic Sea) a decrease of 0.14 _C was observed. SST resulted the most relevant driver, and the relationship between MTC and SST showed a high spatial variability both in terms of strength and sign, being positively stronger in southernmost areas while negative in the northernmost basin. The result is probably underestimated since several psychrophilous and thermophilous species were not included in the analysis. However, it seems that a change towards warmer-water species has already occurred in Italian marine ecosystems. Conversely, total landings temporal dynamics seem mostly driven by changes in fishing effort rather than by MTC and climatic factors. Consequently, fishery management strategies need to focalize primarily on fishing effort reduction, in order to reduce the pressure on the stocks while increasing their resilience to other stressors, among which global warming
File in questo prodotto:
File Dimensione Formato  
Fortibuoni_et_al_2015_REC.pdf

embargo fino al 27/07/2015

Descrizione: articolo principale
Tipologia: Versione dell'editore
Licenza: Accesso chiuso-personale
Dimensione 649.2 kB
Formato Adobe PDF
649.2 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10278/3660242
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact