The ion-exchange process is widely used to dope silicate glass layers with silver, aimed at controlling the Ag state in view of possible applications, ranging from light waveguide fabrication to nanostructured composite glass synthesis. The silver doped glass structure as well as its prescribed properties depend on both the preparation parameters and the subsequent treatments. Several structural aspects are still open with regard either to the modification of the glass incorporating the dopant, or to clustering phenomena silver undergoes as a function of its local concentration and state, which are in turn strongly dependent on the preparation route. Systematic characterizations of these systems are mandatory to address the role of the various synthesis parameters in giving rise to the observed features, thus pointing out the effective methodologies for the fabrication of silicate glass layers with the desired properties. In this work, the results of micro-Raman, optical absorption and photoluminescence characterizations are presented for soda-lime glass slides doped with silver by Ag+–Na+ exchange and subsequent thermal treatments in air. In particular, a cross-section profiling analysis by Raman micro-spectroscopy was performed on Ag ion-exchanged samples after treatment at some different temperatures. The experimental findings allow to elucidate the role of the treatment temperature in the clustering process related to the local Ag concentration inside the exchanged glass layer.
Raman Microspectroscopy Investigation of Ag Ion-Exchanged Glass Layers
CATTARUZZA, Elti;GONELLA, Francesco;MARDEGAN, MARCO;TRAVE, Enrico;
2012-01-01
Abstract
The ion-exchange process is widely used to dope silicate glass layers with silver, aimed at controlling the Ag state in view of possible applications, ranging from light waveguide fabrication to nanostructured composite glass synthesis. The silver doped glass structure as well as its prescribed properties depend on both the preparation parameters and the subsequent treatments. Several structural aspects are still open with regard either to the modification of the glass incorporating the dopant, or to clustering phenomena silver undergoes as a function of its local concentration and state, which are in turn strongly dependent on the preparation route. Systematic characterizations of these systems are mandatory to address the role of the various synthesis parameters in giving rise to the observed features, thus pointing out the effective methodologies for the fabrication of silicate glass layers with the desired properties. In this work, the results of micro-Raman, optical absorption and photoluminescence characterizations are presented for soda-lime glass slides doped with silver by Ag+–Na+ exchange and subsequent thermal treatments in air. In particular, a cross-section profiling analysis by Raman micro-spectroscopy was performed on Ag ion-exchanged samples after treatment at some different temperatures. The experimental findings allow to elucidate the role of the treatment temperature in the clustering process related to the local Ag concentration inside the exchanged glass layer.File | Dimensione | Formato | |
---|---|---|---|
JNN12(2012)8573.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Accesso chiuso-personale
Dimensione
4.13 MB
Formato
Adobe PDF
|
4.13 MB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.