The large-scale use of titanium dioxide nanoparticles (nano-TiO2) in consumer and industrial applications raised environmental health and safety concerns. Potentially impacted ecosystems include estuarine and coastal organisms. Results from ecotoxicological studies with nano-TiO2 dispersed in salt exposure media are difficult to interpret due to fast flocculation and sedimentation phenomena affecting the dispersion stability. The goal of this study was to investigate the stabilization effect of alginate on uncoated nano-TiO2 in artificial seawater dispersions used in ecotoxicity bioassays. The most effective stabilisation was obtained at alginate concentration of 0.45 g/L after sonicating dispersions for 20 min (100 W). The size distribution remained constant after re-suspension, indicating that no agglomeration occurred after deposition. Ecotoxicity tests on Artemia franciscana and Phaeodactylum tricornutum did not show any adverse effects related to the presence of alginate in the exposure media, and provided evidence on possible reduced bioavailability of nano-TiO2. The suitable concentration of alginate is recommended to occur on a case-by-case basis.

The large-scale use of titanium dioxide nanoparticles (nano-TiO2) in consumer and industrial applications raised environmental health and safety concerns. Potentially impacted ecosystems include estuarine and coastal organisms. Results from ecotoxicological studies with nano-TiO2 dispersed in salt exposure media are difficult to interpret due to fast flocculation and sedimentation phenomena affecting the dispersion stability. The goal of this study was to investigate the stabilisation effect of alginate on uncoated nano-TiO2 in artificial seawater dispersions used in ecotoxicity bioassays. The most effective stabilisation was obtained at alginate concentration of 0.45g/L after sonicating dispersions for 20min (100W). The size distribution remained constant after re-suspension, indicating that no agglomeration occurred after deposition. Ecotoxicity tests on Artemia franciscana and Phaeodactylum tricornutum did not show any adverse effects related to the presence of alginate in the exposure media, and provided evidence on possible reduced bioavailability of nano-TiO2. The suitable concentration of alginate is recommended to occur on a case-by-case basis.

Effects of alginate on stability and ecotoxicity of nano-TiO2 in artificial seawater

MINETTO, Diego;POJANA, Giulio;LIBRALATO, Giovanni;VOLPI GHIRARDINI, Annamaria;MARCOMINI, Antonio
2015-01-01

Abstract

The large-scale use of titanium dioxide nanoparticles (nano-TiO2) in consumer and industrial applications raised environmental health and safety concerns. Potentially impacted ecosystems include estuarine and coastal organisms. Results from ecotoxicological studies with nano-TiO2 dispersed in salt exposure media are difficult to interpret due to fast flocculation and sedimentation phenomena affecting the dispersion stability. The goal of this study was to investigate the stabilisation effect of alginate on uncoated nano-TiO2 in artificial seawater dispersions used in ecotoxicity bioassays. The most effective stabilisation was obtained at alginate concentration of 0.45g/L after sonicating dispersions for 20min (100W). The size distribution remained constant after re-suspension, indicating that no agglomeration occurred after deposition. Ecotoxicity tests on Artemia franciscana and Phaeodactylum tricornutum did not show any adverse effects related to the presence of alginate in the exposure media, and provided evidence on possible reduced bioavailability of nano-TiO2. The suitable concentration of alginate is recommended to occur on a case-by-case basis.
File in questo prodotto:
File Dimensione Formato  
Callegaro et al, 2015.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 696.05 kB
Formato Adobe PDF
696.05 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/3652744
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 28
social impact