In this paper we study the structure of a group G = SH factorized by an elementary abelian group S of exponent 2 and a periodic group H without involutions. Our main result is Theorem. Let G = SH be a group factorized by S, a subgroup of exponent 2, and H, a periodic group without elements of even order. If H is hypercentral then G is hyperabelian; moreover, if H is soluble with derived length d, then G has derived length at most 2d.

A note on some factorized groups

JABARA, Enrico
2004-01-01

Abstract

In this paper we study the structure of a group G = SH factorized by an elementary abelian group S of exponent 2 and a periodic group H without involutions. Our main result is Theorem. Let G = SH be a group factorized by S, a subgroup of exponent 2, and H, a periodic group without elements of even order. If H is hypercentral then G is hyperabelian; moreover, if H is soluble with derived length d, then G has derived length at most 2d.
2004
279
File in questo prodotto:
File Dimensione Formato  
Jabara_nFatt.PDF

embargo fino al 01/01/2075

Tipologia: Documento in Post-print
Licenza: Accesso gratuito (solo visione)
Dimensione 179.16 kB
Formato Adobe PDF
179.16 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/36182
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact