In this note we study finite p-groups G=AB admitting a factorization by an abelian group A and a subgroup B. As a consequence of our results we prove that if B contains an abelian subgroup of index p^n, then G has derived length at most 2(n+1).
A note on a class of factorized p-groups
JABARA, Enrico
2005-01-01
Abstract
In this note we study finite p-groups G=AB admitting a factorization by an abelian group A and a subgroup B. As a consequence of our results we prove that if B contains an abelian subgroup of index p^n, then G has derived length at most 2(n+1).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Jabara_Fp.PDF
embargo fino al 01/01/2075
Tipologia:
Documento in Post-print
Licenza:
Accesso gratuito (solo visione)
Dimensione
86.51 kB
Formato
Adobe PDF
|
86.51 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.