The analysis of complex networks is usually based on key properties such as small-worldness and vertex degree distribution. The presence of symmetric motifs on the other hand has been related to redundancy and thus robustness of the networks. In this paper we propose a method for detecting approximate axial symmetries in networks. For each pair of nodes, we define a continuous-time quantum walk which is evolved through time. By measuring the probability that the quantum walker to visits each node of the network in this time frame, we are able to determine whether the two vertices are symmetrical with respect to any axis of the graph. Moreover, we show that we are able to successfully detect approximate axial symmetries too. We show the efficacy of our approach by analysing both synthetic and real-world data. © 2012 Springer-Verlag Berlin Heidelberg.

Approximate Axial Symmetries from Continuous Time Quantum Walks

ROSSI, LUCA;TORSELLO, Andrea;
2012-01-01

Abstract

The analysis of complex networks is usually based on key properties such as small-worldness and vertex degree distribution. The presence of symmetric motifs on the other hand has been related to redundancy and thus robustness of the networks. In this paper we propose a method for detecting approximate axial symmetries in networks. For each pair of nodes, we define a continuous-time quantum walk which is evolved through time. By measuring the probability that the quantum walker to visits each node of the network in this time frame, we are able to determine whether the two vertices are symmetrical with respect to any axis of the graph. Moreover, we show that we are able to successfully detect approximate axial symmetries too. We show the efficacy of our approach by analysing both synthetic and real-world data. © 2012 Springer-Verlag Berlin Heidelberg.
Structural, Syntactic, and Statistical Pattern Recognition - Joint IAPR International Workshop, SSPR&SPR 2012
File in questo prodotto:
File Dimensione Formato  
published.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 647.71 kB
Formato Adobe PDF
647.71 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/35892
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 4
social impact