In this paper we prove that if G is a group which is the union of the conjugates of a finite subgroup H , then we have G = H if H= PSL(2,2^n ), n ∈ N \ {0} or H is a generalized dihedral group. This result extends Theorem 3 of Cutolo et al. (2005) [1] proved only in the case H PSL(2,4).
A note on groups covered by conjugates of a proper subgroup.
JABARA, Enrico
2012-01-01
Abstract
In this paper we prove that if G is a group which is the union of the conjugates of a finite subgroup H , then we have G = H if H= PSL(2,2^n ), n ∈ N \ {0} or H is a generalized dihedral group. This result extends Theorem 3 of Cutolo et al. (2005) [1] proved only in the case H PSL(2,4).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Covered_Jabara.pdf
embargo fino al 20/05/2081
Tipologia:
Documento in Post-print
Licenza:
Accesso gratuito (solo visione)
Dimensione
264.09 kB
Formato
Adobe PDF
|
264.09 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.