Let G be a group and f an automorphism of G. Two elements x,y in G are called f-conjugate if there exists g in G such that x=g^-1*y*g^f. It is easily verified that the f-conjugation is an equivalence relation ; the number R(f) of f-classes of G is called the Reidemeister number of the automorphism f. In this paper we prove that if a polycyclc group G admits an automorphism of order n such that R(f) is finite, then G contains a subgroup of finite index with derived length at most 2^(n-1).
Una nota sui gruppi policiclici che ammettono un automorfismo con numero di Reidemeister finito.
JABARA, Enrico
2007-01-01
Abstract
Let G be a group and f an automorphism of G. Two elements x,y in G are called f-conjugate if there exists g in G such that x=g^-1*y*g^f. It is easily verified that the f-conjugation is an equivalence relation ; the number R(f) of f-classes of G is called the Reidemeister number of the automorphism f. In this paper we prove that if a polycyclc group G admits an automorphism of order n such that R(f) is finite, then G contains a subgroup of finite index with derived length at most 2^(n-1).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Jabara_pReid.PDF
embargo fino al 01/01/2078
Tipologia:
Documento in Post-print
Licenza:
Accesso gratuito (solo visione)
Dimensione
93.56 kB
Formato
Adobe PDF
|
93.56 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.