Let G be a group and f an automorphism of G. Two elements x,y in G are called f-conjugate if there exists g in G such that x=g^-1*y*g^f. It is easily verified that the f-conjugation is an equivalence relation ; the number R(f) of f-classes of G is called the Reidemeister number of the automorphism f. In this paper we prove that if a polycyclc group G admits an automorphism of order n such that R(f) is finite, then G contains a subgroup of finite index with derived length at most 2^(n-1).

Una nota sui gruppi policiclici che ammettono un automorfismo con numero di Reidemeister finito.

JABARA, Enrico
2007-01-01

Abstract

Let G be a group and f an automorphism of G. Two elements x,y in G are called f-conjugate if there exists g in G such that x=g^-1*y*g^f. It is easily verified that the f-conjugation is an equivalence relation ; the number R(f) of f-classes of G is called the Reidemeister number of the automorphism f. In this paper we prove that if a polycyclc group G admits an automorphism of order n such that R(f) is finite, then G contains a subgroup of finite index with derived length at most 2^(n-1).
File in questo prodotto:
File Dimensione Formato  
Jabara_pReid.PDF

embargo fino al 01/01/2078

Tipologia: Documento in Post-print
Licenza: Accesso gratuito (solo visione)
Dimensione 93.56 kB
Formato Adobe PDF
93.56 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/34425
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact