It is well known that the structure of ZrO2 powder synthesized by low temperature calcination of hydrous zirconia is strongly affected by the nature and properties of precursors. In the present paper, we combined a precipitation/restructuring approach (bottom-up/top-down methodology) to produce zirconium hydroxide nanoparticles that transform into stable nanophasic tetragonal zirconia by low temperature calcination. The dimension and structure of precursors could be modulated by adjusting pH. The synthetic route was investigated by Raman spectroscopy, X-Ray Diffraction, Small-Angle XRay Scattering and High-Resolution Transmission Electron Microscopy. The zirconium hydroxide nanoparticles represent the final product of the overall process, which starts as a bottom-up synthesis of the hydroxide gel, followed by a top-down reorganization stage. During this rearrangement, the evolving structure passes through a mass fractal that arises from the clustering of the primary zirconium hydroxide nano-units.

Bottom-up/top-down synthesis of stable zirconium hydroxide nanophases

CANTON, Patrizia;
2012-01-01

Abstract

It is well known that the structure of ZrO2 powder synthesized by low temperature calcination of hydrous zirconia is strongly affected by the nature and properties of precursors. In the present paper, we combined a precipitation/restructuring approach (bottom-up/top-down methodology) to produce zirconium hydroxide nanoparticles that transform into stable nanophasic tetragonal zirconia by low temperature calcination. The dimension and structure of precursors could be modulated by adjusting pH. The synthetic route was investigated by Raman spectroscopy, X-Ray Diffraction, Small-Angle XRay Scattering and High-Resolution Transmission Electron Microscopy. The zirconium hydroxide nanoparticles represent the final product of the overall process, which starts as a bottom-up synthesis of the hydroxide gel, followed by a top-down reorganization stage. During this rearrangement, the evolving structure passes through a mass fractal that arises from the clustering of the primary zirconium hydroxide nano-units.
2012
22
File in questo prodotto:
File Dimensione Formato  
c2jm34111e.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/34221
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact