This paper describes work aimed at the unsupervised learning of shape-classes from shock trees. We commence by considering how to compute the edit distance between weighted trees. We show how to transform the tree edit distance problem into a series of maximum weight clique problems, and show how to use relaxation labeling to find an approximate solution. This allows us to compute a set of pairwise distances between graph-structures. We show how the edit distances can be used to compute a matrix of pairwise affinities using χ² statistics. We present a maximum likelihood method for clustering the graphs by iteratively updating the elements of the affinity matrix. This involves interleaved steps for updating the affinity matrix using an eigendecomposition method and updating the cluster membership indicators. We illustrate the new tree clustering framework on shock-graphs extracted from the silhouettes of 2D shapes.

Discovering Shape Classes using Tree Edit-Distance and Pairwise Clustering

TORSELLO, Andrea;
2007-01-01

Abstract

This paper describes work aimed at the unsupervised learning of shape-classes from shock trees. We commence by considering how to compute the edit distance between weighted trees. We show how to transform the tree edit distance problem into a series of maximum weight clique problems, and show how to use relaxation labeling to find an approximate solution. This allows us to compute a set of pairwise distances between graph-structures. We show how the edit distances can be used to compute a matrix of pairwise affinities using χ² statistics. We present a maximum likelihood method for clustering the graphs by iteratively updating the elements of the affinity matrix. This involves interleaved steps for updating the affinity matrix using an eigendecomposition method and updating the cluster membership indicators. We illustrate the new tree clustering framework on shock-graphs extracted from the silhouettes of 2D shapes.
2007
72
File in questo prodotto:
File Dimensione Formato  
IJCV(72)2007.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Accesso gratuito (solo visione)
Dimensione 828.77 kB
Formato Adobe PDF
828.77 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/33881
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 34
social impact