We describe depth–based graphical displays that show the interdependence of multivariate distributions. The plots involve one–dimensional curves or bivariate scatterplots, so they are easier to interpret than correlation matrices. The correlation curve, modelled on the scale curve of Liu et al. (1999), compares the volume of the observed central regions with the volume under independence. The correlation DD–plot is the scatterplot of depth values under a reference distribution against depth values under independence. The area of the plot gives a measure of distance from independence. Correlation curve and DD-plot require an lsquoindependencersquo model as a baseline: Besides classical parametric specifications, a nonparametric estimator, derived from the randomization principle, is used. Combining data depth and the notion of quadrant dependence, quadrant correlation trajectories are obtained which allow simultaneous representation of subsets of variables. The properties of the plots for the multivariate normal distribution are investigated. Some real data examples are illustrated.
Data depth and correlation
ROMANAZZI, Mario
2004-01-01
Abstract
We describe depth–based graphical displays that show the interdependence of multivariate distributions. The plots involve one–dimensional curves or bivariate scatterplots, so they are easier to interpret than correlation matrices. The correlation curve, modelled on the scale curve of Liu et al. (1999), compares the volume of the observed central regions with the volume under independence. The correlation DD–plot is the scatterplot of depth values under a reference distribution against depth values under independence. The area of the plot gives a measure of distance from independence. Correlation curve and DD-plot require an lsquoindependencersquo model as a baseline: Besides classical parametric specifications, a nonparametric estimator, derived from the randomization principle, is used. Combining data depth and the notion of quadrant dependence, quadrant correlation trajectories are obtained which allow simultaneous representation of subsets of variables. The properties of the plots for the multivariate normal distribution are investigated. Some real data examples are illustrated.File | Dimensione | Formato | |
---|---|---|---|
fulltext.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Accesso chiuso-personale
Dimensione
299.13 kB
Formato
Adobe PDF
|
299.13 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.