Meshless methods have been explored in many 2D problems and they have been shown to be as accurate as Finite Element Methods (FEM). Compared to the extensive literature on 2D applications, papers on solving 3D problems by meshless methods are surprisingly few. Indeed, a main drawback of these methods is the requirement for accurate cubature rules. This paper focuses on the so called Meshless Local Petrov Galerkin (MLPG) methods. We show that accurate solu- tions of 3D potential problems can be attained, provided suitable cubature rules are identified, sparse data structures are efficiently stored, and strategies are de- vised in order to speed up the computation flow, by avoiding unnecessary integral evaluations. The ensuing MLPG linear systems result to be well conditioned, pos- itive definite ones. Their conditioning does not increase much when the mesh size decreases. We show that cubature errors can lower MLPG convergence speed.
Accurate MLPG solution for 3D potential problems
SARTORETTO, Flavio
2008-01-01
Abstract
Meshless methods have been explored in many 2D problems and they have been shown to be as accurate as Finite Element Methods (FEM). Compared to the extensive literature on 2D applications, papers on solving 3D problems by meshless methods are surprisingly few. Indeed, a main drawback of these methods is the requirement for accurate cubature rules. This paper focuses on the so called Meshless Local Petrov Galerkin (MLPG) methods. We show that accurate solu- tions of 3D potential problems can be attained, provided suitable cubature rules are identified, sparse data structures are efficiently stored, and strategies are de- vised in order to speed up the computation flow, by avoiding unnecessary integral evaluations. The ensuing MLPG linear systems result to be well conditioned, pos- itive definite ones. Their conditioning does not increase much when the mesh size decreases. We show that cubature errors can lower MLPG convergence speed.File | Dimensione | Formato | |
---|---|---|---|
CMES08.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Accesso chiuso-personale
Dimensione
163.23 kB
Formato
Adobe PDF
|
163.23 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.