In the standard mean–variance portfolio selection approach, several operative features are not taken into account. Among these neglected aspects, one of particular interest is the finite divisibility of the (stock) assets, i.e. the obligation to buy/sell only integer quantities of asset lots whose number is pre-established. In order to consider such a feature, we deal with a suitably defined quadratic mixed-integer programming problem. In particular, we formulate this problem in terms of quantities of asset lots (instead of, as usual, in terms of capital per cent quotas). Secondly, we provide necessary and sufficient conditions for the existence of a non-empty mixed-integer feasible set of the considered programming problem. Thirdly, we present some rounding procedures for finding, in a finite number of steps, a feasible mixed-integer solution which is better than the one detected by the necessary and sufficient conditions in terms of the value assumed by the portfolio variance. Finally, we perform an extensive computational experiment by means of which we verify the goodness of our approach.
In the standard mean–variance portfolio selection approach, several operative features are not taken into account. Among these neglected aspects, one of particular interest is the finite divisibility of the (stock) assets, i.e. the obligation to buy/sell only integer quantities of asset lots whose number is pre-established. In order to consider such a feature, we deal with a suitably defined quadratic mixed-integer programming problem. In particular, we formulate this problem in terms of quantities of asset lots (instead of, as usual, in terms of capital per cent quotas). Secondly, we provide necessary and sufficient conditions for the existence of a non-empty mixed-integer feasible set of the considered programming problem. Thirdly, we present some rounding procedures for finding, in a finite number of steps, a feasible mixed-integer solution which is better than the one detected by the necessary and sufficient conditions in terms of the value assumed by the portfolio variance. Finally, we perform an extensive computational experiment by means of which we verify the goodness of our approach.
On the existence of solutions to the quadratic mixed-integer mean-variance portfolio selection problem
CORAZZA, Marco
;FAVARETTO, Daniela
2007-01-01
Abstract
In the standard mean–variance portfolio selection approach, several operative features are not taken into account. Among these neglected aspects, one of particular interest is the finite divisibility of the (stock) assets, i.e. the obligation to buy/sell only integer quantities of asset lots whose number is pre-established. In order to consider such a feature, we deal with a suitably defined quadratic mixed-integer programming problem. In particular, we formulate this problem in terms of quantities of asset lots (instead of, as usual, in terms of capital per cent quotas). Secondly, we provide necessary and sufficient conditions for the existence of a non-empty mixed-integer feasible set of the considered programming problem. Thirdly, we present some rounding procedures for finding, in a finite number of steps, a feasible mixed-integer solution which is better than the one detected by the necessary and sufficient conditions in terms of the value assumed by the portfolio variance. Finally, we perform an extensive computational experiment by means of which we verify the goodness of our approach.File | Dimensione | Formato | |
---|---|---|---|
2006-Corazza_Favaretto-On_the_existence_of_solutions_to_the_quadratic_mixed_integer_mean_variance_portfolio_selection_problem-EJOR.pdf
non disponibili
Descrizione: Articolo nella versione dell'editore.
Tipologia:
Versione dell'editore
Licenza:
Accesso chiuso-personale
Dimensione
217.91 kB
Formato
Adobe PDF
|
217.91 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.