In the presence of NaY faujasite, the reactions of dimethyl carbonate (DMC) with several ambident nucleophiles such as o- and p-mercaptophenols (1a,b), o- and p-mercaptobenzoic acids (2a,b), o- and p-hydroxybenzoic acids (3a,b), mandelic and phenyllactic acids (4, 5), have been explored under batch conditions. Highly chemoselective reactions can be performed: at 150 °C, compounds 1 and 2 undergo only a S-methylation reaction, without affecting OH and CO2H groups; at 165 °C, acids 3-5 form the corresponding methyl esters, while both their aromatic and aliphatic OH substituents are fully preserved from methylation and/or transesterification processes. Typical selectivities are of 90-98% and isolated yields of products (S-methyl derivatives and methyl esters, respectively) are in the range of 85-96%. A comparative study with K2CO3 as a catalyst is also reported. Although the base (K2CO3) turns out to be more active than the zeolite, the chemoselectivity is elusive: compounds 2a,b undergo simultaneous S-methylation and esterification reactions, and acids 3-5 yield complex mixtures of products of O-methylation, O-methoxycarbonylation, and esterification of their OH and CO2H groups, respectively. Overall, the combined use of a nontoxic reagent/solvent (DMC) and a safe promoter (NaY) imparts a genuine ecofriendly nature to the investigated synthesis.
Higly Chemoselective Methylation and Esterification Reactions with Dimethyl Carbonate in the Presence of NaY Faujasite. The Case of Mercapto-phenols, Mercapto-benzoic Acids, and Carboxylic Acids bearing OH-substituents
SELVA, Maurizio;TUNDO, Pietro
2006-01-01
Abstract
In the presence of NaY faujasite, the reactions of dimethyl carbonate (DMC) with several ambident nucleophiles such as o- and p-mercaptophenols (1a,b), o- and p-mercaptobenzoic acids (2a,b), o- and p-hydroxybenzoic acids (3a,b), mandelic and phenyllactic acids (4, 5), have been explored under batch conditions. Highly chemoselective reactions can be performed: at 150 °C, compounds 1 and 2 undergo only a S-methylation reaction, without affecting OH and CO2H groups; at 165 °C, acids 3-5 form the corresponding methyl esters, while both their aromatic and aliphatic OH substituents are fully preserved from methylation and/or transesterification processes. Typical selectivities are of 90-98% and isolated yields of products (S-methyl derivatives and methyl esters, respectively) are in the range of 85-96%. A comparative study with K2CO3 as a catalyst is also reported. Although the base (K2CO3) turns out to be more active than the zeolite, the chemoselectivity is elusive: compounds 2a,b undergo simultaneous S-methylation and esterification reactions, and acids 3-5 yield complex mixtures of products of O-methylation, O-methoxycarbonylation, and esterification of their OH and CO2H groups, respectively. Overall, the combined use of a nontoxic reagent/solvent (DMC) and a safe promoter (NaY) imparts a genuine ecofriendly nature to the investigated synthesis.File | Dimensione | Formato | |
---|---|---|---|
2006 JOC - chemoselO,S-O,O.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Accesso gratuito (solo visione)
Dimensione
150.77 kB
Formato
Adobe PDF
|
150.77 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.