A microscopic spin model is proposed for the phenomenological Zimm-Bragg model for the helix-coil transition in biopolymers. This model is shown to provide the same thermophysical properties of the original Zimm-Bragg model and it allows a very conventient framework to compute statistical quantities. Physical origins of this spin model are made transparent by an exact mapping into a one-dimensional Ising model with an external field. However, the dependence on temperature of the reduced external field turns out to differ from the standard one-dimensional Ising model and hence it gives rise to different thermophysical properties, despite the exact mapping connecting them. We discuss how this point has been frequently overlooked in the past literature.
Microscopic formulation of the Zimm-Bragg model for the helix-coil transition
GIACOMETTI, Achille;
2010-01-01
Abstract
A microscopic spin model is proposed for the phenomenological Zimm-Bragg model for the helix-coil transition in biopolymers. This model is shown to provide the same thermophysical properties of the original Zimm-Bragg model and it allows a very conventient framework to compute statistical quantities. Physical origins of this spin model are made transparent by an exact mapping into a one-dimensional Ising model with an external field. However, the dependence on temperature of the reduced external field turns out to differ from the standard one-dimensional Ising model and hence it gives rise to different thermophysical properties, despite the exact mapping connecting them. We discuss how this point has been frequently overlooked in the past literature.File | Dimensione | Formato | |
---|---|---|---|
Badasyan_PRE_10.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Accesso chiuso-personale
Dimensione
209.16 kB
Formato
Adobe PDF
|
209.16 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.