Dechlorination of -hexachlorocyclohexane (lindane) is carried out in the multiphase catalytic system, composed by isooctane and aqueous KOH phases, a phase transfer agent (Aliquat 336) and a metal catalyst, e.g. 5% Pd/C, 5% Pt/C, or Raney-Ni. At 50 ◦C and atmospheric pressure the full conversion of lindane to 1,2,4-tricholorobenzene (1,2,4-TCB) is achieved in 5–10 min via the base assisted dehydrochlorination, followed by the metal catalyzed hydrodechlorination with hydrogen to benzene. Aqueous KOH and Aliquat 336 strongly affect the reaction: if present together they co-promote both dehydrochlorination and hydrodechlorination steps; if KOH is absent, the reaction is forced to follow a different catalytic pathway, which involves a removal of a pair of chlorines at every reaction step by zerovalent metal followed by reduction of metal with hydrogen. This is proven by the formation of 3,4,5,6-tetrachlorocyclohex-1-ene and 5,6-dichlorocyclohexa-1,3-diene as intermediates in the reaction over Raney-Ni, and by the absence of TCBs in the reactions on all the catalysts studied. The final yield of benzene via this pathway can be achieved in shorter times than in a system with KOH. The presence of Aliquat 336 in the isooctane-water system produces a 10-fold rate increase, the presence of alkaline water is also important since it avoids catalyst poisoning by neutralizing the hydrochloric acid formed.
Dechlorination of Lindane in the Multiphase Catalytic Reduction System with Pd/C, Pt/C and Raney-Ni
PEROSA, Alvise;TUNDO, Pietro
2004-01-01
Abstract
Dechlorination of -hexachlorocyclohexane (lindane) is carried out in the multiphase catalytic system, composed by isooctane and aqueous KOH phases, a phase transfer agent (Aliquat 336) and a metal catalyst, e.g. 5% Pd/C, 5% Pt/C, or Raney-Ni. At 50 ◦C and atmospheric pressure the full conversion of lindane to 1,2,4-tricholorobenzene (1,2,4-TCB) is achieved in 5–10 min via the base assisted dehydrochlorination, followed by the metal catalyzed hydrodechlorination with hydrogen to benzene. Aqueous KOH and Aliquat 336 strongly affect the reaction: if present together they co-promote both dehydrochlorination and hydrodechlorination steps; if KOH is absent, the reaction is forced to follow a different catalytic pathway, which involves a removal of a pair of chlorines at every reaction step by zerovalent metal followed by reduction of metal with hydrogen. This is proven by the formation of 3,4,5,6-tetrachlorocyclohex-1-ene and 5,6-dichlorocyclohexa-1,3-diene as intermediates in the reaction over Raney-Ni, and by the absence of TCBs in the reactions on all the catalysts studied. The final yield of benzene via this pathway can be achieved in shorter times than in a system with KOH. The presence of Aliquat 336 in the isooctane-water system produces a 10-fold rate increase, the presence of alkaline water is also important since it avoids catalyst poisoning by neutralizing the hydrochloric acid formed.File | Dimensione | Formato | |
---|---|---|---|
2004_ApplCatalB.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Accesso gratuito (solo visione)
Dimensione
190.8 kB
Formato
Adobe PDF
|
190.8 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.