We deal with Bayesian model selection for beta autoregressive processes. We discuss the choice of parameter and model priors with possible parameter restrictions and suggest a Reversible Jump Markov-Chain Monte Carlo (RJMCMC) procedure based on a Metropolis-Hastings within Gibbs algorithm.
We deal with Bayesian model selection for beta autoregressive processes. We discuss the choice of parameter and model priors with possible parameter restrictions and suggest a Reversible Jump Markov-Chain Monte Carlo (RJMCMC) procedure based on a Metropolis-Hastings within Gibbs algorithm.
Bayesian Model Selection for Beta Autoregressive Processes
CASARIN, Roberto;
2012-01-01
Abstract
We deal with Bayesian model selection for beta autoregressive processes. We discuss the choice of parameter and model priors with possible parameter restrictions and suggest a Reversible Jump Markov-Chain Monte Carlo (RJMCMC) procedure based on a Metropolis-Hastings within Gibbs algorithm.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
main.pdf
non disponibili
Tipologia:
Documento in Pre-print
Licenza:
Accesso chiuso-personale
Dimensione
1.73 MB
Formato
Adobe PDF
|
1.73 MB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.