Objective: This study aimed to describe the use of the P300 event-related potential as a control signal in a brain computer interface (BCI) for healthy and paralysed participants. Methods: The experimental device used the P300 wave to control the movement of an object on a graphical interface. Visual stimuli, consisting of four arrows (up, right, down, left) were randomly presented in peripheral positions on the screen. Participants were instructed to recognize only the arrow indicating a specific direction for an object to move. P300 epochs, synchronized with the stimulus, were analyzed on-line via Independent Component Analysis (ICA) with subsequent feature extraction and classification by using a neural network. Results: We tested the reliability and the performance of the system in real-time. The system needed a short training period to allow task completion and reached good performance. Nonetheless, severely impaired patients had lower performance than healthy participants. Conclusions: The proposed system is effective for use with healthy participants, whereas further research is needed before it can be used with locked-in syndrome patients. Significance: The P300-based BCI described can reliably control, in ‘real time’, the motion of a cursor on a graphical interface, and no timeconsuming training is needed in order to test possible applications for motor-impaired patients.
P300-based brain computer interface: Reliability and performance in healty and paralhysed participants
GIOVE, Silvio;
2006-01-01
Abstract
Objective: This study aimed to describe the use of the P300 event-related potential as a control signal in a brain computer interface (BCI) for healthy and paralysed participants. Methods: The experimental device used the P300 wave to control the movement of an object on a graphical interface. Visual stimuli, consisting of four arrows (up, right, down, left) were randomly presented in peripheral positions on the screen. Participants were instructed to recognize only the arrow indicating a specific direction for an object to move. P300 epochs, synchronized with the stimulus, were analyzed on-line via Independent Component Analysis (ICA) with subsequent feature extraction and classification by using a neural network. Results: We tested the reliability and the performance of the system in real-time. The system needed a short training period to allow task completion and reached good performance. Nonetheless, severely impaired patients had lower performance than healthy participants. Conclusions: The proposed system is effective for use with healthy participants, whereas further research is needed before it can be used with locked-in syndrome patients. Significance: The P300-based BCI described can reliably control, in ‘real time’, the motion of a cursor on a graphical interface, and no timeconsuming training is needed in order to test possible applications for motor-impaired patients.File | Dimensione | Formato | |
---|---|---|---|
clinical neurophysiology.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Licenza non definita
Dimensione
184.63 kB
Formato
Adobe PDF
|
184.63 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.