Many abstract interpretation frameworks and analyses for Prolog have been proposed, which seek to extract information useful for program optimization. Although motivated by practical considerations, notably making Prolog competitive with imperative languages, such frameworks fail to capture some of the control structures of existing implementations of the language. In this paper we propose a novel framework for the abstract interpretation of Prolog which handles the depth-first search rule and the cut operator. It relies on the notion of substitution sequence to model the result of the execution of a goal. The framework consists of (i) a denotational concrete semantics, (ii) a safe abstraction of the concrete semantics defined in terms of a class of post-fixpoints, and (iii) a generic abstract interpretation algorithm. We show that traditional abstract domains of substitutions may easily be adapted to the new framework, and provide experimental evidence of the effectiveness of our approach. We also show that previous work on determinacy analysis, that was not expressible by existing abstract interpretation frameworks, can be seen as an instance of our framework.

Sequence-based Abstract Interpretation of Prolog

ROSSI, Sabina;
2002-01-01

Abstract

Many abstract interpretation frameworks and analyses for Prolog have been proposed, which seek to extract information useful for program optimization. Although motivated by practical considerations, notably making Prolog competitive with imperative languages, such frameworks fail to capture some of the control structures of existing implementations of the language. In this paper we propose a novel framework for the abstract interpretation of Prolog which handles the depth-first search rule and the cut operator. It relies on the notion of substitution sequence to model the result of the execution of a goal. The framework consists of (i) a denotational concrete semantics, (ii) a safe abstraction of the concrete semantics defined in terms of a class of post-fixpoints, and (iii) a generic abstract interpretation algorithm. We show that traditional abstract domains of substitutions may easily be adapted to the new framework, and provide experimental evidence of the effectiveness of our approach. We also show that previous work on determinacy analysis, that was not expressible by existing abstract interpretation frameworks, can be seen as an instance of our framework.
2002
2
File in questo prodotto:
File Dimensione Formato  
main.ps

non disponibili

Tipologia: Abstract
Licenza: Accesso chiuso-personale
Dimensione 841.45 kB
Formato Postscript
841.45 kB Postscript   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/29432
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? ND
social impact