In this article we present CONQUEST, a constraint-based querying system able to support the intrinsically exploratory (i.e., human-guided, interactive and iterative) nature of pattern discovery. Following the inductive database vision, our framework provides users with an expressive constraint-based query language, which allows the discovery process to be effectively driven toward potentially interesting patterns. Such constraints are also exploited to reduce the cost of pattern mining computation. CONQUEST is a comprehensive mining system that can access real-world relational databases from which to extract data. Through the interaction with a friendly graphical user interface (GUI), the user can define complex mining queries by means of few clicks. After a pre-processing step, mining queries are answered by an efficient and robust pattern mining engine which entails the state-of-the-art of data and search space reduction techniques. Resulting patterns are then presented to the user in a pattern browsing window, and possibly stored back in the underlying database as relations.

A Constraint-based Querying System for Exploratory Pattern Discovery

LUCCHESE, Claudio;ORLANDO, Salvatore;
2009

Abstract

In this article we present CONQUEST, a constraint-based querying system able to support the intrinsically exploratory (i.e., human-guided, interactive and iterative) nature of pattern discovery. Following the inductive database vision, our framework provides users with an expressive constraint-based query language, which allows the discovery process to be effectively driven toward potentially interesting patterns. Such constraints are also exploited to reduce the cost of pattern mining computation. CONQUEST is a comprehensive mining system that can access real-world relational databases from which to extract data. Through the interaction with a friendly graphical user interface (GUI), the user can define complex mining queries by means of few clicks. After a pre-processing step, mining queries are answered by an efficient and robust pattern mining engine which entails the state-of-the-art of data and search space reduction techniques. Resulting patterns are then presented to the user in a pattern browsing window, and possibly stored back in the underlying database as relations.
34
File in questo prodotto:
File Dimensione Formato  
1.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Accesso gratuito (solo visione)
Dimensione 2.57 MB
Formato Adobe PDF
2.57 MB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/10278/28949
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 17
social impact