We propose a new class of Markov-switching models useful for business cycle analysis, with transition probabilities following independent beta autoregressive processes. We study the effects of the autoregressive dynamics on the regime duration. We propose a full Bayesian inference approach and particular attention is paid to the parameters of the latent beta autoregressive processes. We discuss the choice of the prior distributions and propose a Markov-chain Monte Carlo algorithm for estimating both the parameters and the latent variables. Finally, we provide an application to the Euro area business cycle.

We propose a new class of Markov-switching models useful for business cycle analysis, with transition probabilities following independent beta autoregressive processes. We study the effects of the autoregressive dynamics on the regime duration. We propose a full Bayesian inference approach and particular attention is paid to the parameters of the latent beta autoregressive processes. We discuss the choice of the prior distributions and propose a Markov-chain Monte Carlo algorithm for estimating both the parameters and the latent variables. Finally, we provide an application to the Euro area business cycle.

Beta Autoregressive Transition Markov-switching Models for Business Cycle Analysis

BILLIO, Monica;CASARIN, Roberto
2011-01-01

Abstract

We propose a new class of Markov-switching models useful for business cycle analysis, with transition probabilities following independent beta autoregressive processes. We study the effects of the autoregressive dynamics on the regime duration. We propose a full Bayesian inference approach and particular attention is paid to the parameters of the latent beta autoregressive processes. We discuss the choice of the prior distributions and propose a Markov-chain Monte Carlo algorithm for estimating both the parameters and the latent variables. Finally, we provide an application to the Euro area business cycle.
File in questo prodotto:
File Dimensione Formato  
Beta Autoregressive Transition Markov-Switching Models.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: Accesso chiuso-personale
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/28929
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact