In this paper we present an approach for storing and aggregating spatio-temporal patterns by using a Trajectory Data Warehouse (TDW). In particular, our aim is to allow the analysts to quickly evaluate frequent patterns mined from trajectories of moving objects occurring in a specific spatial zone and during a given temporal interval. We resort to a TDW, based on a data cube model, having spatial and temporal dimensions, discretized according to a hierarchy of regular grids, and whose facts are sets of trajectories which intersect the spatio-temporal cells of the cube. The idea is to enrich such a TDW with a new measure: frequent patterns obtained from a data-mining process on trajectories. As a consequence these patterns can be analysed by the user at various levels of granularity by means of OLAP queries. The research issues discussed in this paper are (1) the extraction/mining of the patterns to be stored in each cell, which requires an adequate projection phase of trajectories before mining; (2) the spatio-temporal aggregation of patterns to answer roll-up queries, which poses many problems due to the holistic nature of the aggregation function.
In this paper we present an approach for storing and aggregating spatio-temporal patterns by using a Trajectory Data Warehouse (TDW). In particular, our aim is to allow the analysts to quickly evaluate frequent patterns mined from trajectories of moving objects occurring in a specific spatial zone and during a given temporal interval. We resort to a TDW, based on a data cube model, having spatial and temporal dimensions, discretized according to a hierarchy of regular grids, and whose facts are sets of trajectories which intersect the spatio-temporal cells of the cube. The idea is to enrich such a TDW with a new measure: frequent patterns obtained from a data-mining process on trajectories. As a consequence these patterns can be analysed by the user at various levels of granularity by means of OLAP queries. The research issues discussed in this paper are (1) the extraction/mining of the patterns to be stored in each cell, which requires an adequate projection phase of trajectories before mining; (2) the spatio-temporal aggregation of patterns to answer roll-up queries, which poses many problems due to the holistic nature of the aggregation function.
Frequent Spatio-Temporal Patterns in Trajectory Data Warehouses
ORLANDO, Salvatore;RAFFAETA', Alessandra;RONCATO, Alessandro;SILVESTRI, Claudio
2009-01-01
Abstract
In this paper we present an approach for storing and aggregating spatio-temporal patterns by using a Trajectory Data Warehouse (TDW). In particular, our aim is to allow the analysts to quickly evaluate frequent patterns mined from trajectories of moving objects occurring in a specific spatial zone and during a given temporal interval. We resort to a TDW, based on a data cube model, having spatial and temporal dimensions, discretized according to a hierarchy of regular grids, and whose facts are sets of trajectories which intersect the spatio-temporal cells of the cube. The idea is to enrich such a TDW with a new measure: frequent patterns obtained from a data-mining process on trajectories. As a consequence these patterns can be analysed by the user at various levels of granularity by means of OLAP queries. The research issues discussed in this paper are (1) the extraction/mining of the patterns to be stored in each cell, which requires an adequate projection phase of trajectories before mining; (2) the spatio-temporal aggregation of patterns to answer roll-up queries, which poses many problems due to the holistic nature of the aggregation function.File | Dimensione | Formato | |
---|---|---|---|
patterns_TDW.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Accesso chiuso-personale
Dimensione
1.59 MB
Formato
Adobe PDF
|
1.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.