In this paper we prove that if V is a vector space over a field of positive characteristic p<> 5 then any regular subgroup A of exponent 5 of GL(V) is cyclic. As a consequence a conjecture of Gupta and Mazurov is proved to be true.
Fixed point free actions of groups of exponent 5
JABARA, Enrico
2004-01-01
Abstract
In this paper we prove that if V is a vector space over a field of positive characteristic p<> 5 then any regular subgroup A of exponent 5 of GL(V) is cyclic. As a consequence a conjecture of Gupta and Mazurov is proved to be true.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Jabara_FPF.PDF
Open Access dal 02/04/2023
Tipologia:
Documento in Post-print
Licenza:
Licenza non definita
Dimensione
260.14 kB
Formato
Adobe PDF
|
260.14 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.