In this paper we intend to shed further light on time series clustering. Firstly, we aim at clarifying, via Monte Carlo simulations, to which extent the choice of the measure of dissimilarity can affect the results of time series cluster analysis. Then we move to a different point of view and tackle the issue of classifying time series using the Self Organizing Maps (Kohonen, 2001), typically employed in pattern recognition for cross-sectional data.

A different perspective on clustering time series

GEROLIMETTO, Margherita;PROCIDANO, Isabella
2011

Abstract

In this paper we intend to shed further light on time series clustering. Firstly, we aim at clarifying, via Monte Carlo simulations, to which extent the choice of the measure of dissimilarity can affect the results of time series cluster analysis. Then we move to a different point of view and tackle the issue of classifying time series using the Self Organizing Maps (Kohonen, 2001), typically employed in pattern recognition for cross-sectional data.
Classification and Data Analysis
File in questo prodotto:
File Dimensione Formato  
GerolimettoProcidano-attiCLADAG2011.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 115.37 kB
Formato Adobe PDF
115.37 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/27740
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact