A finite group is called a CH-group if for every x,y∈G∖Z(G), xy=yx implies that $\|\cent Gx\| = \|\cent Gy\|$. Applying results of Schmidt [‘Zentralisatorverbände endlicher Gruppen’, Rend. Sem. Mat. Univ. Padova 44 (1970), 97–131] and Rebmann [‘F-Gruppen’, Arch. Math. 22 (1971), 225–230] concerning CA-groups and F-groups, the structure of CH-groups is determined, up to that of CH-groups of prime-power order. Upper bounds are found for the derived length of nilpotent and solvable CH-groups.
Finite groups whose noncentral commuting elements have centralizers of equal size.
JABARA, Enrico;
2010-01-01
Abstract
A finite group is called a CH-group if for every x,y∈G∖Z(G), xy=yx implies that $\|\cent Gx\| = \|\cent Gy\|$. Applying results of Schmidt [‘Zentralisatorverbände endlicher Gruppen’, Rend. Sem. Mat. Univ. Padova 44 (1970), 97–131] and Rebmann [‘F-Gruppen’, Arch. Math. 22 (1971), 225–230] concerning CA-groups and F-groups, the structure of CH-groups is determined, up to that of CH-groups of prime-power order. Upper bounds are found for the derived length of nilpotent and solvable CH-groups.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
DH_Jabara.PDF
embargo fino al 01/08/2081
Tipologia:
Documento in Post-print
Licenza:
Accesso gratuito (solo visione)
Dimensione
158.95 kB
Formato
Adobe PDF
|
158.95 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.