A finite group is called a CH-group if for every x,y∈G∖Z(G), xy=yx implies that $\|\cent Gx\| = \|\cent Gy\|$. Applying results of Schmidt [‘Zentralisatorverbände endlicher Gruppen’, Rend. Sem. Mat. Univ. Padova 44 (1970), 97–131] and Rebmann [‘F-Gruppen’, Arch. Math. 22 (1971), 225–230] concerning CA-groups and F-groups, the structure of CH-groups is determined, up to that of CH-groups of prime-power order. Upper bounds are found for the derived length of nilpotent and solvable CH-groups.

Finite groups whose noncentral commuting elements have centralizers of equal size.

JABARA, Enrico;
2010-01-01

Abstract

A finite group is called a CH-group if for every x,y∈G∖Z(G), xy=yx implies that $\|\cent Gx\| = \|\cent Gy\|$. Applying results of Schmidt [‘Zentralisatorverbände endlicher Gruppen’, Rend. Sem. Mat. Univ. Padova 44 (1970), 97–131] and Rebmann [‘F-Gruppen’, Arch. Math. 22 (1971), 225–230] concerning CA-groups and F-groups, the structure of CH-groups is determined, up to that of CH-groups of prime-power order. Upper bounds are found for the derived length of nilpotent and solvable CH-groups.
File in questo prodotto:
File Dimensione Formato  
DH_Jabara.PDF

embargo fino al 01/08/2081

Tipologia: Documento in Post-print
Licenza: Accesso gratuito (solo visione)
Dimensione 158.95 kB
Formato Adobe PDF
158.95 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/27103
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 25
social impact