The present paper is aimed at the analysis of flow and pollutant dispersion in a portion of the Canal Grande (Grand Canal) in Venice (Italy) by means of both Computational Fluid Dynamics (CFD) FLUENT simulations and wind tunnel experiments performed at the University of Gävle (Sweden). For this application, Canal Grande can be viewed as a sort of street canyon where the bottom surface is water and bus boat emissions are the major source of pollution. Numerical investigations were made to assess the effect of the water surface on air flow and pollutant concentrations in the atmosphere. One of the challenges has been to deal with the interface between two immiscible fluids which requires ad-hoc treatment of the wall in terms of the numerical scheme adopted and the grid definition which needs to be much finer than in typical numerical airflow simulations in urban street canyons. Preliminary results have shown that the presence of water at the bottom of the street canyon modifies airflow and turbulence structure with direct consequences on concentration distribution within the domain.
Flow and pollutant dispersion within the Canal Grande channel in Venice (Italy) via CFD techniques.
SARTORETTO, Flavio;GIACOMETTI, Achille;
2010-01-01
Abstract
The present paper is aimed at the analysis of flow and pollutant dispersion in a portion of the Canal Grande (Grand Canal) in Venice (Italy) by means of both Computational Fluid Dynamics (CFD) FLUENT simulations and wind tunnel experiments performed at the University of Gävle (Sweden). For this application, Canal Grande can be viewed as a sort of street canyon where the bottom surface is water and bus boat emissions are the major source of pollution. Numerical investigations were made to assess the effect of the water surface on air flow and pollutant concentrations in the atmosphere. One of the challenges has been to deal with the interface between two immiscible fluids which requires ad-hoc treatment of the wall in terms of the numerical scheme adopted and the grid definition which needs to be much finer than in typical numerical airflow simulations in urban street canyons. Preliminary results have shown that the presence of water at the bottom of the street canyon modifies airflow and turbulence structure with direct consequences on concentration distribution within the domain.File | Dimensione | Formato | |
---|---|---|---|
Buccolieri_HARMO13_2010_b.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Accesso chiuso-personale
Dimensione
848.14 kB
Formato
Adobe PDF
|
848.14 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.