Serum deprivation induced in human lymphoblastoid Raji cells oxidative stress-associated apoptotic death and G0/G1 cell cycle arrest. Addition into culture medium of the immunomodulatory protein Seminal vesicle protein 4 (SV-IV) protected these cells against apoptosis but not against cycle arrest. The antiapoptotic activity was related to: (1) decrease of endocellular reactive Oxygen species (ROS) (2) increase of mRNAs encoding anti-oxidant enzymes (catalase, G6PD) and antiapoptotic proteins (survivin, cox-1, Hsp70, c-Fos); (3) decrease of mRNAs encoding proapoptotic proteins (c-myc, Bax, caspase-3, Apaf-1). The biochemical changes underlaying these effects were probably induced by a protein tyrosine kinase (PTK) activity triggered by the binding of SV-IV to its putative plasma membrane receptors. The ineffectiveness of SV-IV to abrogate the cycle arrest was accounted for by its downregulating effects on D1,3/E G1-cyclins and CdK2/4 gene expression, ppRb/pRb ratio, and intracellular ROS concentration. In conclusion, these experiments: (1) prove that SV-IV acts as a cell survival factor; (2) suggest the involvement of a PTK in SV-IV signaling; (3) point to cell cycle-linked enzyme inhibition as responsible for cycle arrest; (4) provide a model to dissect the cycle arrest and apoptosis induced by serum withdrawal; (5) imply a possible role of SV-IV in the survival of hemiallogenic implanting embryos.

The immunomodulatory protein SV-IV protects serum-deprived cells against apoptosis but not against G0/G1 arrest: possible implications for the survival of implanting embryo.

RAVAGNAN, Giampietro;
2007-01-01

Abstract

Serum deprivation induced in human lymphoblastoid Raji cells oxidative stress-associated apoptotic death and G0/G1 cell cycle arrest. Addition into culture medium of the immunomodulatory protein Seminal vesicle protein 4 (SV-IV) protected these cells against apoptosis but not against cycle arrest. The antiapoptotic activity was related to: (1) decrease of endocellular reactive Oxygen species (ROS) (2) increase of mRNAs encoding anti-oxidant enzymes (catalase, G6PD) and antiapoptotic proteins (survivin, cox-1, Hsp70, c-Fos); (3) decrease of mRNAs encoding proapoptotic proteins (c-myc, Bax, caspase-3, Apaf-1). The biochemical changes underlaying these effects were probably induced by a protein tyrosine kinase (PTK) activity triggered by the binding of SV-IV to its putative plasma membrane receptors. The ineffectiveness of SV-IV to abrogate the cycle arrest was accounted for by its downregulating effects on D1,3/E G1-cyclins and CdK2/4 gene expression, ppRb/pRb ratio, and intracellular ROS concentration. In conclusion, these experiments: (1) prove that SV-IV acts as a cell survival factor; (2) suggest the involvement of a PTK in SV-IV signaling; (3) point to cell cycle-linked enzyme inhibition as responsible for cycle arrest; (4) provide a model to dissect the cycle arrest and apoptosis induced by serum withdrawal; (5) imply a possible role of SV-IV in the survival of hemiallogenic implanting embryos.
2007
212(3)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/22812
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact