Let G be a group and A a group of automorphisms of G. An A- orbit of G is a set of the form {g^α | α ∈ A}, where g is an element of G. The aim of this paper is to prove that if A is abelian and G is a union of a finite number of A-orbits then G admits a normal abelian subgroup of finite index. This result answers affirmatively a question raised by Neumann and Rowley (1998)
Abelian automorphisms groups with a finite number of orbits.
JABARA, Enrico
2010-01-01
Abstract
Let G be a group and A a group of automorphisms of G. An A- orbit of G is a set of the form {g^α | α ∈ A}, where g is an element of G. The aim of this paper is to prove that if A is abelian and G is a union of a finite number of A-orbits then G admits a normal abelian subgroup of finite index. This result answers affirmatively a question raised by Neumann and Rowley (1998)File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
AbelianAutom_Jabara.PDF
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Accesso chiuso-personale
Dimensione
308.13 kB
Formato
Adobe PDF
|
308.13 kB | Adobe PDF | Visualizza/Apri |
I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.