Let G be a group and A a group of automorphisms of G. An A- orbit of G is a set of the form {g^α | α ∈ A}, where g is an element of G. The aim of this paper is to prove that if A is abelian and G is a union of a finite number of A-orbits then G admits a normal abelian subgroup of finite index. This result answers affirmatively a question raised by Neumann and Rowley (1998)

Abelian automorphisms groups with a finite number of orbits.

JABARA, Enrico
2010-01-01

Abstract

Let G be a group and A a group of automorphisms of G. An A- orbit of G is a set of the form {g^α | α ∈ A}, where g is an element of G. The aim of this paper is to prove that if A is abelian and G is a union of a finite number of A-orbits then G admits a normal abelian subgroup of finite index. This result answers affirmatively a question raised by Neumann and Rowley (1998)
2010
323
File in questo prodotto:
File Dimensione Formato  
AbelianAutom_Jabara.PDF

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso chiuso-personale
Dimensione 308.13 kB
Formato Adobe PDF
308.13 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/22612
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact