Abstract: This article describes 1) a methodology for the green synthesis of a class of methylammonium and methylphosphonium ionic liquids (ILs), 2) how to tune their acid–base properties by anion exchange, 3) complete neat-phase NMR spectroscopic characterisation of these materials and 4) their application as active organocatalysts for base-promoted carbon– carbon bond-forming reactions. Methylation of tertiary amines or phosphines with dimethyl carbonate leads to the formation of the halogen-free methyl-onium methyl carbonate salts, and these can be easily anion-exchanged to yield a range of derivatives with different melting points, solubility, acid–base properties, stability and viscosity. Treatment with water, in particular, yields bicarbonate-exchanged liquid onium salts. These proved strongly basic, enough to efficiently catalyse the Michael reaction; experiments suggest that in these systems the bicarbonate basicity is boosted by two orders of magnitude with respect to inorganic bicarbonate salts. These basic ionic liquids used in catalytic amounts are better even than traditional strong organic bases. The present work also introduces neat NMR spectroscopy of the ionic liquids as a probe for solute– solvent interactions as well as a tool for characterisation. Our studies show that high catalytic efficacy of functional ionic liquids can be achieved by integrating their green synthesis, along with a fine-tuning of their structure. Demonstrating that ionic liquid solvents can be made by a truly green procedure, and that their properties and reactivity can be tailored to the point of bridging the gap between their use as solvents and as catalysts. Keywords: dimethyl carbonate · green chemistry · ionic liquids · Michael addition · NMR spectroscopy

Ionic Liquids Made with Dimethylcarbonate: Solvents as well as Boosted Basic Catalysts for the Michael Reaction

LUCCHINI, Vittorio;NOE', Marco;PEROSA, Alvise;SELVA, Maurizio
2009-01-01

Abstract

Abstract: This article describes 1) a methodology for the green synthesis of a class of methylammonium and methylphosphonium ionic liquids (ILs), 2) how to tune their acid–base properties by anion exchange, 3) complete neat-phase NMR spectroscopic characterisation of these materials and 4) their application as active organocatalysts for base-promoted carbon– carbon bond-forming reactions. Methylation of tertiary amines or phosphines with dimethyl carbonate leads to the formation of the halogen-free methyl-onium methyl carbonate salts, and these can be easily anion-exchanged to yield a range of derivatives with different melting points, solubility, acid–base properties, stability and viscosity. Treatment with water, in particular, yields bicarbonate-exchanged liquid onium salts. These proved strongly basic, enough to efficiently catalyse the Michael reaction; experiments suggest that in these systems the bicarbonate basicity is boosted by two orders of magnitude with respect to inorganic bicarbonate salts. These basic ionic liquids used in catalytic amounts are better even than traditional strong organic bases. The present work also introduces neat NMR spectroscopy of the ionic liquids as a probe for solute– solvent interactions as well as a tool for characterisation. Our studies show that high catalytic efficacy of functional ionic liquids can be achieved by integrating their green synthesis, along with a fine-tuning of their structure. Demonstrating that ionic liquid solvents can be made by a truly green procedure, and that their properties and reactivity can be tailored to the point of bridging the gap between their use as solvents and as catalysts. Keywords: dimethyl carbonate · green chemistry · ionic liquids · Michael addition · NMR spectroscopy
File in questo prodotto:
File Dimensione Formato  
162.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Accesso gratuito (solo visione)
Dimensione 343.21 kB
Formato Adobe PDF
343.21 kB Adobe PDF Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/21813
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 92
  • ???jsp.display-item.citation.isi??? 90
social impact