Depth functions give information not only on the location but also on the dispersion of probability distributions.The Lebesgue integral o fLiu's simplicial depth function is equal to the expected volume of the random simplex whose vertices are p + 1 independent observations from there levant distribution. Oja'svolume depthisthe Lebesgueintegral of a linear transformation of the influence function of simplicial depth. The relation of these results with dispersive orderings of distributions is discussed. Some properties of Mahalanobis' and halfspace depth are illustrated.

Data depth, random simplices and multivariate dispersion

ROMANAZZI, Mario
2009-01-01

Abstract

Depth functions give information not only on the location but also on the dispersion of probability distributions.The Lebesgue integral o fLiu's simplicial depth function is equal to the expected volume of the random simplex whose vertices are p + 1 independent observations from there levant distribution. Oja'svolume depthisthe Lebesgueintegral of a linear transformation of the influence function of simplicial depth. The relation of these results with dispersive orderings of distributions is discussed. Some properties of Mahalanobis' and halfspace depth are illustrated.
2009
79
File in questo prodotto:
File Dimensione Formato  
STAPRO5374.pdf

non disponibili

Tipologia: Altro materiale relativo al prodotto (file audio, video, ecc.)
Licenza: Accesso chiuso-personale
Dimensione 558.46 kB
Formato Adobe PDF
558.46 kB Adobe PDF   Visualizza/Apri

I documenti in ARCA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10278/21746
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact